Как находить площадь интеграла. Определенный интеграл. Как вычислить площадь фигуры. Завершение решения может выглядеть так

Урок по математике для первого курса учреждений среднего профессионального образования

Тема: “Вычисление площадей плоских фигур с помощью определенного интеграла”.

Преподаватель математики С.Б. Баранова

Образовательные задачи:

    обеспечить повторение, обобщение и систематизацию материала по данной теме;

    создать условия контроля (самоконтроля) знаний и умений.

Развивающие задачи:

    способствовать формированию умений применять приемы сравнения, обобщения, выделения главного;

    продолжить развитие математического кругозора, мышления и речи, внимания и памяти.

Воспитательные задачи:

    содействовать воспитанию интереса к математике;

    воспитание активности, мобильности, умения общаться.

Тип урока – комбинированный урок с элементами проблемного обучения.

Методы и приёмы обучения – проблемный, наглядный, самостоятельная работа студентов, самопроверка.

Оборудование – приложение к уроку, таблицы.

План урока

    Организационный момент. Подготовка студентов к работе на занятии.

    Подготовка студентов к активной деятельности (проверка вычислительных навыков и таблиц интегралов по группам).

    Подготовка к изучению нового материала через повторение и актуализацию опорных знаний.

    Работа с новым материалом.

    Первичное осмысление и применение изученного материала, его закрепление.

    Домашнее задание.

    Применение знаний.

    Подведение итогов.

    Рефлексия.

Ход урока

1. Организационный момент.

Понятие определенного интеграла является одним из основных понятий математики. К концу 17 в. Ньютоном и Лейбницем был создан аппарат дифференциального и интегрального исчисления, который составляет основу математического анализа.

На предыдущих занятиях мы научились “брать” неопределенные интегралы, вычислять определенные интегралы. Но куда важнее применение определенного интеграла. Мы знаем, что с его помощью можно вычислять площади криволинейных трапеций. Сегодня мы ответим на вопрос: “Как это сделать?”

2. Подготовка студентов к активной деятельности.

Но сначала нам необходимо проверить вычислительные навыки и знание таблицы интегралов. Перед вами задание, результатом выполнения которого будет высказывание французского математика С.Д. Пуассона (Жизнь украшается двумя вещами: занятием математикой и ее преподаванием).

Задание выполняется парами ().

3. Подготовка к изучению нового материала через повторение и актуализацию опорных знаний.

Переходим к теме нашего занятия “Вычисления площадей плоских фигур с помощью определенного интеграла”. Кроме умения вычислять определенный интеграл, нам нужно вспомнить свойства площадей. В чем они заключаются?

    Равные фигуры имеют равные площади.

    Если фигура разбита на две части, то её площадь находится как сумма площадей отдельных частей.

Также нам нужно повторить правило интеграла суммы и формулу Ньютона-Лейбница.

4. Работа с новым интегралом

1. Определенный интеграл служит для вычисления площадей криволинейных трапеций. Но на практике чаще встречаются фигуры, которые таковыми не являются и нам необходимо научиться находить площади именно таких фигур.

Работа по таблице “Основные случаи расположения плоской фигуры и соответствующие формулы площадей” ().

2. Давай проверим себя.

Работа с заданием () с последующей проверкой (таблица №3).

3. Но умения правильно выбирать формулы для площади недостаточно. На следующей таблице () в каждом из заданий есть “внешняя” причина, не позволяющая вычислить площадь фигуры. Найдём их.

а) не указаны формулы для графиков функций.

б) нет пределов интегрирования.

в) не указаны названия графиков и нет одного предела.

г) не указана формула одного из графиков.

4. С учетом проделанной работы, сформулируем и запишем алгоритм решения задач на тему урока.

    Построить графики данных линий. Определить искомую фигуру.

    Найти пределы интегрирования.

    Записать площадь искомой фигуры с помощью определенного интеграла.

    Вычислить полученный интеграл.

5. Первичное осмысление и применение изученного материала, его закрепление.

1. С учетом алгоритма выполним задание №2 из последней таблицы.

Рисунок 1

Решение:

Для точки А:

не удовлетворяет условию задания

Для точки В:

не удовлетворяет условию задачи.

Ответ: (кв. ед).

2. Но при выполнении этого задания алгоритм применялся не полностью. Для его отработки выполним следующее задание

Задание. Найти площадь фигуры, ограниченной линиями , .

Рисунок 2

Решение:

парабола, вершина (m,n).

(0;2) – вершина

Найдём пределы интегрирования.

Ответ: (кв.ед).

6. Домашнее задание.

Вычислить площадь фигуры, ограниченной линиями (задание разобрать).

7. Применение знаний.

Самостоятельная работа (Приложение №5))

8. Подведение итогов.

    научились составлять формулы для нахождения площадей плоских фигур;

    находить пределы интегрирования;

    вычислять площади фигур.

9. Рефлексия.

Студентам раздаются листочки. Они должны оценить свою работу, выбрав один из предложенных вариантов ответа.

Оценить степень сложности урока.

Вам было на уроке:

    легко;

    обычно;

    трудно.

    усвоил полностью, могу применить;

    усвоил полностью, но затрудняюсь в применении;

    усвоил частично;

    не усвоил.

Просмотрев ответы, сделать вывод о подготовленности студентов к практической работе.

Используемая литература:

    Валуцэ И.И., Дилигулин Г.Д. Математика для техникумов.

    Крамер Н.Ш., Путко Б.А., Тришин И.М. Высшая математика для экономистов.

    Данко П.Е., Попов А.Г. Высшая математика, ч.1.

    Званич Л.И., Рязановский А.Р. М., Новая школа.

    Газета “Математика”. Издательский дом “Первое сентября”.

Приложение № 1

Вычислите определённые интегралы и вы узнаете одно из высказываний французского математика С.Д.Пуассона.

9

Жизнь

Тремя

Двумя

Вещами

Занятием

Математикой

Арифметикой

Преподаванием

Её

Украшается

Забыванием

Приложение № 2

ОСНОВНЫЕ СЛУЧАИ РАСПОЛОЖЕНИЯ ПЛОСКОЙ ФИГУРЫ И СООТВЕТСТВУЮЩИЕ ФОРМУЛЫ ПЛОЩАДЕЙ


______________________________________


_

__________________________________ ______

________________________________ ______

___________________________________

    Фигура симметричная относительно оси ординат или начала координат.


Приложение № 3

Используя определенный интеграл, запишите формулы для вычисления площадей фигур, заштрихованных на рисунке.


_________________________________________


__________________________________________


___________________________________________


___________________________________________


____________________________________________

Приложение № 4

Найти «внешнюю» причину, не позволяющую вычислить площадь фигуры.


Рисунок 1


Рисунок 2


Рисунок 3


Рисунок 4

_____________________________

Приложение № 5

Самостоятельная работа

Вариант 1


    Запишите с помощью интегралов площади фигур и вычислите их



  1. Нарисуйте фигуры, пл ощади которых равны следующим интегралам:

Самостоятельная работа

Вариант 2

    1. Установите, верны ли следующие утверждения:


    1. Запишите с помощью интегралов площади фигур и вычислите их



    1. Нарисуйте фигуры, площади которых равны следующим интегралам:

В действительности, для того чтобы находить площадь фигуры не надо так уж много знаний по неопределенному и определенному интегралу. Задание «вычислить площадь с помощью определенного интеграла» всегда предполагает построение чертежа , поэтому гораздо более актуальным вопросом будут ваши знания и навыки построения чертежей. В этой связи полезно освежить в памяти графики основных элементарных функций, а, как минимум, уметь строить прямую, и гиперболу .

Криволинейной трапецией называется плоская фигура, ограниченная осью , прямыми , и графиком непрерывной на отрезке функции , которая не меняет знак на этом промежутке. Пусть данная фигура расположена не ниже оси абсцисс:

Тогда площадь криволинейной трапеции численно равна определенному интегралу . У любого определенного интеграла (который существует) есть очень хороший геометрический смысл.

С точки зрения геометрии определенный интеграл - это ПЛОЩАДЬ .

То есть, определенному интегралу (если он существует) геометрически соответствует площадь некоторой фигуры. Например, рассмотрим определенный интеграл . Подынтегральная функция задает на плоскости кривую, располагающуюся выше оси (желающие могут выполнить чертёж), а сам определенный интеграл численно равен площади соответствующей криволинейной трапеции.

Пример 1

Это типовая формулировка задания. Первый и важнейший момент решения - построение чертежа . Причем, чертеж необходимо построить ПРАВИЛЬНО .

При построении чертежа я рекомендую следующий порядок: сначала лучше построить все прямые (если они есть) и только потом - параболы, гиперболы, графики других функций. Графики функций выгоднее строить поточечно.

В данной задаче решение может выглядеть так.
Выполним чертеж (обратите внимание, что уравнение задает ось ):


На отрезке график функции расположен над осью , поэтому:

Ответ:

После того, как задание выполнено, всегда полезно взглянуть на чертеж и прикинуть, реальный ли получился ответ. В данном случае «на глазок» подсчитываем количество клеточек в чертеже - ну, примерно 9 наберётся, похоже на правду. Совершенно понятно, что если бы у нас получился, скажем, ответ: 20 квадратных единиц, то, очевидно, что где-то допущена ошибка - в рассматриваемую фигуру 20 клеточек явно не вмещается, от силы десяток. Если ответ получился отрицательным, то задание тоже решено некорректно.

Пример 3

Вычислить площадь фигуры, ограниченной линиями , и координатными осями.

Решение : Выполним чертеж:


Если криволинейная трапеция расположена под осью (или, по крайней мере, не выше данной оси), то её площадь можно найти по формуле:


В данном случае:

Внимание! Не следует путать два типа задач :

1) Если Вам предложено решить просто определенный интеграл без всякого геометрического смысла, то он может быть отрицательным.

2) Если Вам предложено найти площадь фигуры с помощью определенного интеграла, то площадь всегда положительна! Именно поэтому в только что рассмотренной формуле фигурирует минус.

На практике чаще всего фигура расположена и в верхней и в нижней полуплоскости, а поэтому, от простейших школьных задачек переходим к более содержательным примерам.

Пример 4

Найти площадь плоской фигуры, ограниченной линиями , .

Решение : Сначала нужно выполнить чертеж. Вообще говоря, при построении чертежа в задачах на площадь нас больше всего интересуют точки пересечения линий. Найдем точки пересечения параболы и прямой . Это можно сделать двумя способами. Первый способ - аналитический. Решаем уравнение:

Значит, нижний предел интегрирования , верхний предел интегрирования .

Этим способом лучше, по возможности, не пользоваться .

Гораздо выгоднее и быстрее построить линии поточечно, при этом пределы интегрирования выясняются как бы «сами собой». Тем не менее, аналитический способ нахождения пределов все-таки приходится иногда применять, если, например, график достаточно большой, или поточенное построение не выявило пределов интегрирования (они могут быть дробными или иррациональными). И такой пример, мы тоже рассмотрим.

Возвращаемся к нашей задаче: рациональнее сначала построить прямую и только потом параболу. Выполним чертеж:

А теперь рабочая формула : Если на отрезке некоторая непрерывная функция больше либо равна некоторой непрерывной функции , то площадь фигуры, ограниченной графиками данных функций и прямыми , , можно найти по формуле:

Здесь уже не надо думать, где расположена фигура - над осью или под осью, и, грубо говоря, важно, какой график ВЫШЕ (относительно другого графика), а какой - НИЖЕ .

В рассматриваемом примере очевидно, что на отрезке парабола располагается выше прямой, а поэтому из необходимо вычесть

Завершение решения может выглядеть так:

Искомая фигура ограничена параболой сверху и прямой снизу.
На отрезке , по соответствующей формуле:

Ответ:

Пример 4

Вычислить площадь фигуры, ограниченной линиями , , , .

Решение : Сначала выполним чертеж:

Фигура, площадь которой нам нужно найти, заштрихована синим цветом (внимательно смотрите на условие - чем ограничена фигура!). Но на практике по невнимательности нередко возникает «глюк», что нужно найти площадь фигуры, которая заштрихована зеленым цветом!

Этот пример еще полезен и тем, что в нём площадь фигуры считается с помощью двух определенных интегралов.

Действительно :

1) На отрезке над осью расположен график прямой ;

2) На отрезке над осью расположен график гиперболы .

Совершенно очевидно, что площади можно (и нужно) приплюсовать, поэтому:

Переходим к рассмотрению приложений интегрального исчисления. На этом уроке мы разберем типовую и наиболее распространенную задачу вычисления площади плоской фигуры с помощью определенного интеграла . Наконец-то все ищущие смысл в высшей математике – да найдут его. Мало ли. Придется вот в жизни приближать дачный участок элементарными функциями и находить его площадь с помощью определенного интеграла.

Для успешного освоения материала, необходимо:

1) Разбираться в неопределенном интеграле хотя бы на среднем уровне. Таким образом, чайникам для начала следует ознакомиться с уроком Не.

2) Уметь применять формулу Ньютона-Лейбница и вычислять определенный интеграл. Наладить теплые дружеские отношения с определенными интегралами можно на странице Определенный интеграл. Примеры решений . Задание «вычислить площадь с помощью определенного интеграла» всегда предполагает построение чертежа , поэтому актуальным вопросом будут также ваши знания и навыки построения чертежей. Как минимум, надо уметь строить прямую, параболу и гиперболу.

Начнем с криволинейной трапеции. Криволинейной трапеция - это плоская фигура, ограниченная графиком некоторой функции y = f (x ), осью OX и линиями x = a ; x = b .

Площадь криволинейной трапеции численно равна определенному интегралу

У любого определенного интеграла (который существует) есть очень хороший геометрический смысл. На уроке Определенный интеграл. Примеры решений мы говорили, что определенный интеграл – это число. А сейчас пришла пора констатировать еще один полезный факт. С точки зрения геометрии определенный интеграл – это ПЛОЩАДЬ . То есть, определенному интегралу (если он существует) геометрически соответствует площадь некоторой фигуры . Рассмотрим определенный интеграл

Подынтегральная функция

задает на плоскости кривую (её при желании можно начертить), а сам определенный интеграл численно равен площади соответствующей криволинейной трапеции.



Пример 1

, , , .

Это типовая формулировка задания. Важнейший момент решения – построение чертежа . Причем, чертеж необходимо построить ПРАВИЛЬНО .

При построении чертежа я рекомендую следующий порядок: сначала лучше построить все прямые (если они есть) и только потом – параболы, гиперболы, графики других функций. С техникой поточечного построения можно ознакомиться в справочном материале Графики и свойства элементарных функций . Там же можно найти очень полезный применительно к нашему уроку материал – как быстро построить параболу.

В данной задаче решение может выглядеть так.

Выполним чертеж (обратите внимание, что уравнение y = 0 задает ось OX ):

Штриховать криволинейную трапецию не будем, здесь очевидно, о какой площади идет речь. Решение продолжается так:

На отрезке [-2; 1] график функции y = x 2 + 2 расположен над осью OX , поэтому:

Ответ: .

У кого возникли трудности с вычислением определенного интеграла и применением формулы Ньютона-Лейбница

,

обратитесь к лекции Определенный интеграл. Примеры решений . После того, как задание выполнено, всегда полезно взглянуть на чертеж и прикинуть, реальный ли получился ответ. В данном случае «на глазок» подсчитываем количество клеточек в чертеже – ну, примерно 9 наберётся, похоже на правду. Совершенно понятно, что если бы у нас получился, скажем, ответ: 20 квадратных единиц, то, очевидно, что где-то допущена ошибка – в рассматриваемую фигуру 20 клеточек явно не вмещается, от силы десяток. Если ответ получился отрицательным, то задание тоже решено некорректно.

Пример 2

Вычислить площадь фигуры, ограниченной линиями xy = 4, x = 2, x = 4 и осью OX .

Это пример для самостоятельного решения. Полное решение и ответ в конце урока.

Что делать, если криволинейная трапеция расположена под осью OX ?

Пример 3

Вычислить площадь фигуры, ограниченной линиями y = e - x , x = 1 и координатными осями.

Решение: Выполним чертеж:

Если криволинейная трапеция полностью расположена под осью OX , то её площадь можно найти по формуле:

В данном случае:

.

Внимание! Не следует путать два типа задач:

1) Если Вам предложено решить просто определенный интеграл без всякого геометрического смысла, то он может быть отрицательным.

2) Если Вам предложено найти площадь фигуры с помощью определенного интеграла, то площадь всегда положительна! Именно поэтому в только что рассмотренной формуле фигурирует минус.

На практике чаще всего фигура расположена и в верхней и в нижней полуплоскости, а поэтому, от простейших школьных задачек переходим к более содержательным примерам.

Пример 4

Найти площадь плоской фигуры, ограниченной линиями y = 2x x 2 , y = -x .

Решение: Сначала нужно выполнить чертеж. При построении чертежа в задачах на площадь нас больше всего интересуют точки пересечения линий. Найдем точки пересечения параболы y = 2x x 2 и прямой y = -x . Это можно сделать двумя способами. Первый способ – аналитический. Решаем уравнение:

Значит, нижний предел интегрирования a = 0, верхний предел интегрирования b = 3. Часто выгоднее и быстрее построить линии поточечно, при этом пределы интегрирования выясняются как бы «сами собой». Тем не менее, аналитический способ нахождения пределов все-таки приходится иногда применять, если, например, график достаточно большой, или поточенное построение не выявило пределов интегрирования (они могут быть дробными или иррациональными). Возвращаемся к нашей задаче: рациональнее сначала построить прямую и только потом параболу. Выполним чертеж:

Повторимся, что при поточечном построении пределы интегрирования чаще всего выясняются «автоматоматически».

А теперь рабочая формула:

Если на отрезке [a ; b ] некоторая непрерывная функция f (x ) больше либо равна некоторой непрерывной функции g (x ), то площадь соответствующей фигуры можно найти по формуле:

Здесь уже не надо думать, где расположена фигура – над осью или под осью, а важно, какой график ВЫШЕ (относительно другого графика), а какой – НИЖЕ .

В рассматриваемом примере очевидно, что на отрезке парабола располагается выше прямой, а поэтому из 2x x 2 необходимо вычесть –x .

Завершение решения может выглядеть так:

Искомая фигура ограничена параболой y = 2x x 2 сверху и прямой y = -x снизу.

На отрезке 2x x 2 ≥ -x . По соответствующей формуле:

Ответ: .

На самом деле, школьная формула для площади криволинейной трапеции в нижней полуплоскости (см. пример №3) – частный случай формулы

.

Поскольку ось OX задается уравнением y = 0, а график функции g (x ) расположен ниже оси OX , то

.

А сейчас пара примеров для самостоятельного решения

Пример 5

Пример 6

Найти площадь фигуры, ограниченной линиями

В ходе решения задач на вычисление площади с помощью определенного интеграла иногда случается забавный казус. Чертеж выполнен правильно, расчеты – правильно, но, по невнимательности,… найдена площадь не той фигуры.

Пример 7

Сначала выполним чертеж:

Фигура, площадь которой нам нужно найти, заштрихована синим цветом (внимательно смотрите на условие – чем ограничена фигура!). Но на практике, по невнимательности, нередко решают, что нужно найти площадь фигуры, которая заштрихована зеленым цветом!

Этот пример еще и полезен тем, что в нём площадь фигуры считается с помощью двух определенных интегралов. Действительно:

1) На отрезке [-1; 1] над осью OX расположен график прямой y = x +1;

2) На отрезке над осью OX расположен график гиперболы y = (2/x ).

Совершенно очевидно, что площади можно (и нужно) приплюсовать, поэтому:

Ответ:

Пример 8

Вычислить площадь фигуры, ограниченной линиями

Представим уравнения в «школьном» виде

и выполним поточечный чертеж:

Из чертежа видно, что верхний предел у нас «хороший»: b = 1.

Но чему равен нижний предел?! Понятно, что это не целое число, но какое?

Может быть, a =(-1/3)? Но где гарантия, что чертеж выполнен с идеальной точностью, вполне может оказаться что a =(-1/4). А если мы вообще неправильно построили график?

В таких случаях приходиться тратить дополнительное время и уточнять пределы интегрирования аналитически.

Найдем точки пересечения графиков

Для этого решаем уравнение:

.

Следовательно, a =(-1/3).

Дальнейшее решение тривиально. Главное, не запутаться в подстановках и знаках. Вычисления здесь не самые простые. На отрезке

, ,

по соответствующей формуле:

Ответ:

В заключение урока, рассмотрим два задания сложнее.

Пример 9

Вычислить площадь фигуры, ограниченной линиями

Решение: Изобразим данную фигуру на чертеже.

Для поточечного построения чертежа необходимо знать внешний вид синусоиды. Вообще, полезно знать графики всех элементарных функций, а также некоторые значения синуса. Их можно найти в таблице значений тригонометрических функций . В ряде случаев (например, в этом) допускается построение схематического чертежа, на котором принципиально правильно должны быть отображены графики и пределы интегрирования.

С пределами интегрирования здесь проблем нет, они следуют прямо из условия:

– «икс» изменяется от нуля до «пи». Оформляем дальнейшее решение:

На отрезке график функции y = sin 3 x расположен над осью OX , поэтому:

(1) Как интегрируются синусы и косинусы в нечетных степенях, можно посмотреть на уроке Интегралы от тригонометрических функций . Отщипываем один синус.

(2) Используем основное тригонометрическое тождество в виде

(3) Проведем замену переменной t = cos x , тогда: расположен над осью , поэтому:

.

.

Примечание: обратите внимание, как берется интеграл от тангенса в кубе, здесь использовано следствие основного тригонометрического тождества

.

Вычисление площади фигуры – это, пожалуй, одна из наиболее сложных задач теории площадей. В школьной геометрии учат находить площади основных геометрических фигур таких как, например, треугольник, ромб, прямоугольник, трапеция, круг и т.п. Однако зачастую приходится сталкиваться с вычислением площадей более сложных фигур. Именно при решении таких задач очень удобно использовать интегральное исчисление.

Определение.

Криволинейной трапецией называют некоторую фигуру G, ограниченную линиями y = f(x), у = 0, х = а и х = b, причем функция f(x) непрерывна на отрезке [а; b] и не меняет на нем свой знак (рис. 1). Площадь криволинейной трапеции можно обозначить S(G).

Определенный интеграл ʃ а b f(x)dx для функции f(x), являющийся непрерывной и неотрицательной на отрезке [а; b], и есть площадь соответствующей криволинейной трапеции.

То есть, чтобы найти площадь фигуры G, ограниченной линиями y = f(x), у = 0, х = а и х = b, необходимо вычислить определенный интеграл ʃ а b f(x)dx.

Таким образом, S(G) = ʃ а b f(x)dx.

В случае, если функция y = f(x) не положительна на [а; b], то площадь криволинейной трапеции может быть найдена по формуле S(G) = -ʃ а b f(x)dx.

Пример 1.

Вычислить площадь фигуры, ограниченной линиями у = х 3 ; у = 1; х = 2.

Решение.

Заданные линии образуют фигуру АВС, которая показана штриховкой на рис. 2.

Искомая площадь равна разности между площадями криволинейной трапеции DACE и квадрата DABE.

Используя формулу S = ʃ а b f(x)dx = S(b) – S(a), найдем пределы интегрирования. Для этого решим систему двух уравнений:

{у = х 3 ,
{у = 1.

Таким образом, имеем х 1 = 1 – нижний предел и х = 2 – верхний предел.

Итак, S = S DACE – S DABE = ʃ 1 2 x 3 dx – 1 = x 4 /4| 1 2 – 1 = (16 – 1)/4 – 1 = 11/4 (кв. ед.).

Ответ: 11/4 кв. ед.

Пример 2.

Вычислить площадь фигуры, ограниченной линиями у = √х; у = 2; х = 9.

Решение.

Заданные линии образуют фигуру АВС, которая ограничена сверху графиком функции

у = √х, а снизу графиком функции у = 2. Полученная фигура показана штриховкой на рис. 3.

Искомая площадь равна S = ʃ а b (√x – 2). Найдем пределы интегрирования: b = 9, для нахождения а, решим систему двух уравнений:

{у = √х,
{у = 2.

Таким образом, имеем, что х = 4 = а – это нижний предел.

Итак, S = ∫ 4 9 (√x – 2)dx = ∫ 4 9 √x dx –∫ 4 9 2dx = 2/3 x√х| 4 9 – 2х| 4 9 = (18 – 16/3) – (18 – 8) = 2 2/3 (кв. ед.).

Ответ: S = 2 2/3 кв. ед.

Пример 3.

Вычислить площадь фигуры, ограниченной линиями у = х 3 – 4х; у = 0; х ≥ 0.

Решение.

Построим график функции у = х 3 – 4х при х ≥ 0. Для этого найдем производную у’:

y’ = 3x 2 – 4, y’ = 0 при х = ±2/√3 ≈ 1,1 – критические точки.

Если изобразить критические точки на числовой оси и расставить знаки производной, то получим, что функция убывает от нуля до 2/√3 и возрастает от 2/√3 до плюс бесконечности. Тогда х = 2/√3 – точка минимума, минимальное значение функции у min = -16/(3√3) ≈ -3.

Определим точки пересечения графика с осями координат:

если х = 0, то у = 0, а значит, А(0; 0) – точка пересечения с осью Оу;

если у = 0, то х 3 – 4х = 0 или х(х 2 – 4) = 0, или х(х – 2)(х + 2) = 0, откуда х 1 = 0, х 2 = 2, х 3 = -2 (не подходит, т.к. х ≥ 0).

Точки А(0; 0) и В(2; 0) – точки пересечения графика с осью Ох.

Заданные линии образуют фигуру ОАВ, которая показана штриховкой на рис. 4.

Так как функция у = х 3 – 4х принимает на (0; 2) отрицательное значение, то

S = |ʃ 0 2 (x 3 – 4x)dx|.

Имеем: ʃ 0 2 (x 3 – 4х)dx =(x 4 /4 – 4х 2 /2)| 0 2 = -4, откуда S = 4 кв. ед.

Ответ: S = 4 кв. ед.

Пример 4.

Найти площадь фигуры, ограниченной параболой у = 2х 2 – 2х + 1, прямыми х = 0, у = 0 и касательной к данной параболе в точке с абсциссой х 0 = 2.

Решение.

Сначала составим уравнение касательной к параболе у = 2х 2 – 2х + 1 в точке с абсциссой х₀ = 2.

Так как производная y’ = 4x – 2, то при х 0 = 2 получим k = y’(2) = 6.

Найдем ординату точки касания: у 0 = 2 · 2 2 – 2 · 2 + 1 = 5.

Следовательно, уравнение касательной имеет вид: у – 5 = 6(х – 2) или у = 6х – 7.

Построим фигуру, ограниченную линиями:

у = 2х 2 – 2х + 1, у = 0, х = 0, у = 6х – 7.

Г у = 2х 2 – 2х + 1 – парабола. Точки пересечения с осями координат: А(0; 1) – с осью Оу; с осью Ох – нет точек пересечения, т.к. уравнение 2х 2 – 2х + 1 = 0 не имеет решений (D < 0). Найдем вершину параболы:

x b = 2/4 = 1/2;

y b = 1/2, то есть вершина параболы точка В имеет координаты В(1/2; 1/2).

Итак, фигура, площадь которой требуется определить, показана штриховкой на рис. 5.

Имеем: S О A В D = S OABC – S ADBC .

Найдем координаты точки D из условия:

6х – 7 = 0, т.е. х = 7/6, значит DC = 2 – 7/6 = 5/6.

Площадь треугольника DBC найдем по формуле S ADBC = 1/2 · DC · BC. Таким образом,

S ADBC = 1/2 · 5/6 · 5 = 25/12 кв. ед.

S OABC = ʃ 0 2 (2x 2 – 2х + 1)dx = (2x 3 /3 – 2х 2 /2 + х)| 0 2 = 10/3 (кв. ед.).

Окончательно получим: S О A В D = S OABC – S ADBC = 10/3 – 25/12 = 5/4 = 1 1/4 (кв. ед).

Ответ: S = 1 1/4 кв. ед.

Мы разобрали примеры нахождения площадей фигур, ограниченных заданными линиями . Для успешного решения подобных задач нужно уметь строить на плоскости линии и графики функций, находить точки пересечения линий, применять формулу для нахождения площади, что подразумевает наличие умений и навыков вычисления определенных интегралов.

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Начинаем рассматривать собственно процесс вычисления двойного интеграла и знакомиться с его геометрическим смыслом.

Двойной интеграл численно равен площади плоской фигуры (области интегрирования). Это простейший вид двойного интеграла, когда функция двух переменных равна единице: .

Сначала рассмотрим задачу в общем виде. Сейчас вы немало удивитесь, насколько всё действительно просто! Вычислим площадь плоской фигуры , ограниченной линиями . Для определённости считаем, что на отрезке . Площадь данной фигуры численно равна:

Изобразим область на чертеже:

Выберем первый способ обхода области:

Таким образом:

И сразу важный технический приём: повторные интегралы можно считать по отдельности . Сначала внутренний интеграл, затем – внешний интеграл. Данный способ настоятельно рекомендую начинающим в теме чайникам.

1) Вычислим внутренний интеграл, при этом интегрирование проводится по переменной «игрек»:

Неопределённый интеграл тут простейший, и далее используется банальная формула Ньютона-Лейбница, с той лишь разницей, что пределами интегрирования являются не числа, а функции . Сначала подставили в «игрек» (первообразную функцию) верхний предел, затем – нижний предел

2) Результат, полученный в первом пункте необходимо подставить во внешний интеграл:

Более компактная запись всего решения выглядит так:

Полученная формула – это в точности рабочая формула для вычисления площади плоской фигуры с помощью «обычного» определённого интеграла! Смотрите урок Вычисление площади с помощью определенного интеграла , там она на каждом шагу!

То есть, задача вычисления площади с помощью двойного интеграла мало чем отличается от задачи нахождения площади с помощью определённого интеграла! Фактически это одно и тоже!

Соответственно, никаких трудностей возникнуть не должно! Я рассмотрю не очень много примеров, так как вы, по сути, неоднократно сталкивались с данной задачей.

Пример 9

Решение: Изобразим область на чертеже:

Выберем следующий порядок обхода области:

Здесь и далее я не буду останавливаться на том, как выполнять обход области, поскольку в первом параграфе были приведены очень подробные разъяснения.

Таким образом:

Как я уже отмечал, начинающим лучше вычислять повторные интегралы по отдельности, этого же метода буду придерживаться и я:

1) Сначала с помощью формулы Ньютона-Лейбница разбираемся с внутренним интегралом:

2) Результат, полученный на первом шаге, подставляем во внешний интеграл:

Пункт 2 – фактически нахождение площади плоской фигуры с помощью определённого интеграла.

Ответ:

Вот такая вот глупая и наивная задача.

Любопытный пример для самостоятельного решения:

Пример 10

С помощью двойного интеграла, вычислить площадь плоской фигуры , ограниченной линиями , ,

Примерный образец чистового оформления решения в конце урока.

В Примерах 9-10 значительно выгоднее использовать первый способ обхода области, любознательные читатели, кстати, могут изменить порядок обхода и вычислить площади вторым способом. Если не допустите ошибку, то, естественно, получатся те же самые значения площадей.

Но в ряде случаев более эффективен второй способ обхода области, и в заключение курса молодого ботана рассмотрим ещё пару примеров на эту тему:

Пример 11

С помощью двойного интеграла, вычислить площадь плоской фигуры , ограниченной линиями ,

Решение: нас с нетерпением ждут две параболы с бзиком, которые лежат на боку. Улыбаться не нужно, похожие вещи в кратных интегралах встречаются частенько.

Как проще всего сделать чертёж?

Представим параболу в виде двух функций:
– верхняя ветвь и – нижняя ветвь.

Аналогично, представим параболу в виде верхней и нижней ветвей.

Далее рулит поточечное построение графиков, в результате чего получается вот такая причудливая фигура:

Площадь фигуры вычислим с помощью двойного интеграла по формуле:

Что будет, если мы выберем первый способ обхода области? Во-первых, данную область придётся разделить на две части. А во-вторых, мы будем наблюдать сию печальную картину: . Интегралы, конечно, не сверхсложного уровня, но… существует старая математическая присказка: кто с корнями дружен, тому зачёт не нужен.

Поэтому из недоразумения, которое дано в условии, выразим обратные функции:

Обратные функции в данном примере обладают тем преимуществом, что задают сразу всю параболу целиком без всяких там листьев, желудей веток и корней.

Согласно второму способу, обход области будет следующим:

Таким образом:

Как говорится, ощутите разницу.

1) Расправляемся с внутренним интегралом:

Результат подставляем во внешний интеграл:

Интегрирование по переменной «игрек» не должно смущать, была бы буква «зю» – замечательно бы проинтегрировалось и по ней. Хотя кто прочитал второй параграф урока Как вычислить объем тела вращения , тот уже не испытывает ни малейшей неловкости с интегрированием по «игрек».

Также обратите внимание на первый шаг: подынтегральная функция является чётной, а отрезок интегрирования симметричен относительно нуля. Поэтому отрезок можно споловинить, а результат – удвоить. Данный приём подробно закомментирован на уроке Эффективные методы вычисления определённого интеграла .

Что добавить…. Всё!

Ответ:

Для проверки своей технике интегрирования можете попробовать вычислить . Ответ должен получиться точно таким же.

Пример 12

С помощью двойного интеграла, вычислить площадь плоской фигуры , ограниченной линиями

Это пример для самостоятельного решения. Интересно отметить, что если вы попробуете использовать первый способ обхода области, то фигуру придётся разделить уже не на две, а на три части! И, соответственно, получится три пары повторных интегралов. Бывает и такое.

Мастер класс подошел к завершению, и пора переходить на гроссмейстерский уровень – Как вычислить двойной интеграл? Примеры решений . Постараюсь во второй статье так не маньячить =)

Желаю успехов!

Решения и ответы:

Пример 2: Решение: Изобразим область на чертеже:

Выберем следующий порядок обхода области:

Таким образом:
Перейдём к обратным функциям:


Таким образом:
Ответ:

Пример 4: Решение: Перейдём к прямым функциям:


Выполним чертёж:

Изменим порядок обхода области:

Ответ: