Первые механические часы - история создания часов - часы время и стиль. Кто изобрел маятник Маятниковые часы изобрел

Очень давняя. С древнейших времен человек старался как-то определить себя во времени и пространстве. Пытался узнать свою землю и добраться до новых,чужих, совершал различные открытия. Естественно, человек понимал, что существует взаимосвязь смен времен года, дней, часов. И хотел эту взаимосвязь понять и как-то ее рассчитать, чтобы чувствовать себя более уверенно.

Измерять время первыми начали шумеры. Они придумали солнечные часы. Достаточно простое изобретение, но у них работало хорошо.

Шумеры жили на территории сегодняшнего Ирака, там солнечных дней в году очень много. А для работы солнечных часов - это решающий фактор. Ночью и в облачные дни солнечные часы оказывались, увы, бесполезными.

Сначала это была просто палка, воткнутая в землю, а вокруг нее обозначены деления (часы), и по тени, отбрасываемой от палки (гномон), можно было определять время. Потом изобретение усовершенствовали. Вместо палки стали строить красивые стелы и колонны.

И до наших дней дошли древние солнечные часы.

Придумали даже переносные солнечные часы. Конструкция состояла из двух колец с отверстием для солнечного луча.

Примерно в те же времена появились водяные часы. Это был сосуд с высеченными отметками, из которого капля за каплей выливалась вода. Они использовались аж до XVII века!

Считается, что первый будильник тоже был водным и придумал его Платон для своей школы. Он состоял из двух сосудов, из одного в другой потихоньку переливалась вода, вытесняя воздух, а ко второму сосуду была приставлена дудочка, и, в определенный момент, она начинала свистеть.

Позже были изобретены огневые часы. Это были длинные тонкие свечи с делениями, которые зажигали, и по мере их сгорания по делениям отмеряли время. В сутки тратилось несколько таких свечей.

Потом их усовершенствовали. К некоторым делениям прикрепляли на прочной нитке бусины. А пламя, по мере сгорания свечи, пережигала эту нить, и бусины с грохотом падали на метталический поднос. Это был своего рода будильник.

Были еще маслянные часы. В лампаде с маслом был установлен фитиль, а на самой лампадке нанесены деления, по мере сгорания масла, уровень его менялся и по делениям можно было определить время.

Также придумали цветочные часы. Высаживали определенные сорта цветов на солнечном месте и определяли время по мере раскрывания и закрывания цветков в утреннее и вечернее время.

Позже, около 1000 лет назад, с развитием стеклодувного мастерства, появились и всем знакомые песочные часы. Они определяют достаточно точно небольшие отрезки времени, 5 минут, 10 минут, полчаса. Делали даже наборы, состоящие из нескольких, разных по размеру сосудов с песком, каждый из которых определял разный промежуток времени.

Но все эти часы были несовершенны, работали не при всех условиях, за ними нужно было постоянно следить. Поэтому точного времени определить по ним было невозможно. Но, в любом случае, какие-то ориентиры во времени они давали.

Механические часы

И только с появлением механических часов люди смогли достаточно точно узнавать время и не отслеживать постоянно работу часов.

Первые механические часы были сделаны в Китае в 725 году н.э.

Маятник и маятниковые часы изобрел в XI веке аббат Герберт, а спустя время, уже в XVII веке их усовершенствовал Галилео Галилей, но использовать его в часах стали много позже. В 1675 году Х.Гюйгенс запатентовал карманные часы. И только спустя время появились наручные часы, сначала они были только женские. Их богато украшали камнями, но время они показывали крайне неточно. А в конце XIX века появились и мужские наручные часы.

Далее, с развитием прогресса, в XX веке появляются кварцевые, электронные, атомные часы. Постоянно все меняется, совершенствуется с бешеной скоростью. И часы не исключение. Появляются новые функции, новые модели, внедряются новые разработки.

Какое дальнейшее развитие ждет часы даже сложно предугадать!

Если знаете про историю часов еще какие-то факты, обязательно поделитесь в комментариях!

А для Ваших малышей будет интересно посмотреть , которые рассказывают про историю часов, о том, как устроены часы и как можно замедлить время. Интересного просмотра!

Проблема измерения времени издавна стоит перед человеком. Сегодняшнее человеческое общество вообще не смогло бы наверное существовать без часов - приборов для точного измерения времени. Поезда не смогли бы ходить в соответствии с расписанием, рабочие завода не знали бы, когда приходить на работу, а когда уходить домой. С этой же проблемой столкнулись школьники и студенты.

В принципе, отмерять достаточно большие промежутки времени человек научился давно, ещё на рассвете своего развития. Такие понятия, как "сутки", "месяц", "год" появились ещё тогда. Первыми, кто разделил сутки на промежутки времени были, наверное, древние египтяне. В их сутках было 40 унут. И если промежуток времени в одни сутки можно измерить естественным образом (это время между двумя кульминациями Солнца), то для измерения более коротких промежутков времени необходимы специальные приборы. Это - солнечные, песочные и водяные часы. (Хотя, момент кульминации Солнца тоже без специальных приборов не определишь. Простейший специальный прибор - это палка, воткнутая в землю. Но об этом - как-нибудь в другой раз.) Все эти виды часов были изобретены ещё в античные времена и обладают рядом недостатков: они либо слишком неточны, либо отмеряют слишком короткие промежутки времени (например, песочные часы, больше подходящие в качестве таймера).

Особую важность точное измерение времени получило в средние века, в эпоху бурного развития мореплавания. Знание точного времени было необходимо штурману корабля для определения географической долготы. Поэтому, потребовался особо точный прибор для измерения времени. Для работы такого прибора необходим некий эталон, колебательная система, совершающая колебания за строго равные промежутки времени. Такой колебательной системой стал маятник.

Маятником называют систему, подвешенную в поле тяжести и совершающую механические колебания. Простейшим маятником является шарик, подвешенный на нити. Маятник обладает рядом интересных свойств. Важнейшим из них является то, что период колебаний маятника зависит только от длины подвеса и не зависит от массы груза и амплитуды колебаний (то есть, величины размаха). Это свойство маятника было впервые исследовано Галилеем.

Галилео Галилей


Галилея побудило к глубоким исследованиям маятников наблюдение колебаний люстры, в Пизанском Соборе. Эта люстра свисала с потолка на 49-метровом подвесе.

Пизанский собор. В центре снимка - та самая люстра.


Так как точных приборов для измерения времени тогда ещё не было, в своих опытах Галилей использовал в качестве эталона биение своего сердца. Он опубликовал исследование колебаний маятника и заявил, что период колебаний не зависит от их амплитуды. Так же было обнаружено, что периоды колебаний маятников соотносятся как квадратные корни из его длины. Эти исследования заинтересовали Христиана Гюйгенса, который первым предложил использовать маятник в качестве эталона для регулирования хода часов и первым создал реально действующий образец таких часов. Пытался создать маятниковые часы и сам Галилей, однако он умер не успев закончить эту работу.

Так, или иначе, но на несколько столетий вперёд эталоном для регулирования хода часов стал маятник. Маятниковые часы, созданные в этот период обладали достаточно высокой точностью, чтобы использовать их в навигации и в научных исследованиях и просто в быту. Только в середине ХХ века он уступил место кварцевому осциллятору, применяемому почти повсеместно, так как частота его колебаний более стабильна. Для ещё более точного измерения времени служат атомные часы с ещё более стабильной частотой колебаний регулятора хода. В них для этого используется цезиевый эталон времени.

Христиан Гюйгенс

Математически, закон колебаний маятника выглядит следующим образом:

В этой формуле: L - длина подвеса, g - ускорение свободного падения, Т - период колебаний маятника. Как видим, период Т не зависит ни от массы груза, ни от амплитуды колебаний. Он зависит только от длины подвеса, и ещё от значения ускорения свободного падения. То есть, к примеру, на Луне, период колебаний маятника будет другим.

А теперь, как я и обещал, даю ответ на задачку, опубликованную в прошлом сообщении . Для того, чтобы измерить объём комнаты, надо измерить её длину, ширину и высоту, а потом перемножить их. Значит, необходим какой-нибудь эталон длины. Какой? Линейки - то у нас нет!!! Мы берём ботинок за шнурок и раскачиваем его как маятник. Секундомером мы измеряем время нескольких колебаний, к примеру - десяти, и поделив его на число колебаний, получаем время совершения одного колебания, то есть - период Т . А, если известен период колебаний маятника, то из уже известной вам формулы ничего не стоит высчитать длину подвеса, то есть - шнурка. Зная длину шнурка, мы пользуясь им как линейкой без труда вычислим длину, ширину и высоту комнаты. Вот такое решение казалось бы сложной задачки!!!

Спасибо за внимание!!!

Часто ли задумываются люди над вопросом, когда и кто изобрел маятник , наблюдая за качанием маятника в часах? Этим изобретателем был Галилео . После бесед с отцом, (подробнее: ) Галилей вернулся в университет, но уже не на медицинский факультет, а на философский, где преподавали математику и физику. В те времена эти науки еще не отделялись от философии. На философском факультете Галилей решил терпеливо изучить , учение которого основывалось на созерцании и не подтверждалось опытами.

Галилей в Пизанском соборе

Всем студентам, по университетским правилам, полагалось посещать церковь. Галилео, будучи верующим человеком, унаследовал от отца равнодушие к церковным обрядам, и ревностным молельщиком назвать его было нельзя. Как сообщает его ученик Вивиани , в 1583 году Галилей , находясь во время богослужения в Пизанском соборе , обратил внимание на люстру , подвешенную к потолку на тонких цепочках. Служители, зажигавшие свечи в люстрах, видимо, толкнули ее, и тяжелая люстра медленно раскачивалась. Галилей стал наблюдать за ней: размахи люстры постепенно укорачивались, ослабевали, но Галилею показалось, что, хотя размахи люстры уменьшаются и затихают, время одного качания остается неизменным . Чтобы проверить эту догадку, нужны были точные часы, а часов Галилей не имел - их тогда еще не изобрели. Юноша догадался использовать вместо секундомера биение своего сердца. Нащупав на руке пульсирующую жилку, Галилей считал удары пульса и одновременно качание люстры. Догадка как будто подтверждалась, но люстра, к сожалению, перестала качаться, а подтолкнуть ее во время богослужения Галилей не решился.

Изобрел маятник Галилей

Вернувшись домой, Галилей провел опыты . Он привязал на нитки и стал раскачивать разные предметы, попавшиеся ему под руку: ключ от двери, камешки, пустую чернильницу и другие грузики. Эти самодельные маятники он подвесил к потолку и смотрел, как они качаются. Отсчет времени он по-прежнему вел по ударам пульса. Прежде всего Галилей убедился, что легкие предметы качаются так же часто, как и тяжелые, если они висят на нитках одинаковой длины. А зависят качания только от длины нити : чем нитка длиннее, тем реже качается маятник, а чем короче, тем качания чаще. Частота качаний зависит только от длины маятника, но отнюдь не от его веса . Галилей укоротил нитку, на которой висела пустая чернильница; сделал так, чтобы она качалась в такт биению пульса и на каждый удар сердца приходилось одно качание маятника. Затем он подтолкнул чернильницу, а сам уселся в кресло и стал считать пульс, наблюдая за маятником. Сначала чернильница, раскачиваясь, делала довольно широкие размахи и быстро летала из стороны в сторону, а потом ее размахи становились все меньше, а движение медленнее; таким образом время одного качания заметным образом не изменялось. И большие и малые размахи маятника все равно совпадали с ударами пульса. Но тут Галилей заметил, что от волнения его «секундомер» - сердце - начал биться быстрее и мешать опыту. Тогда он стал повторять свой опыт много раз подряд, чтобы успокоить сердце. В результате этих опытов Галилей убедился, что время одного качания заметным образом не меняется - оно остается одинаковым (если бы у Галилея имелись современные точные часы, он мог бы заметить, что небольшая разница между большими и маленькими качаниями все же есть, но она очень мала и почти неуловима).

Прибор пульсологий

Размышляя о своем открытии, Галилей подумал, что оно может пригодиться врачам, для того чтобы считать пульс у больных людей. Молодой ученый придумал небольшой приборчик , названный пульсологием . Пульсологий быстро вошел во врачебную практику. Врач приходил к больному, одной рукой щупал пульс, а другой подтягивал или удлинял маятник своего прибора так, чтобы качания маятника совпадали с ударами пульса. Потом по длине маятника врач определял частоту биения сердца больного. Эта история первого научного открытия Галилея показывает, что Галилей обладал всеми качествами настоящего ученого. Он отличался незаурядной наблюдательностью; тысячи, миллионы людей видели, как раскачиваются люстры, качели, плотницкие отвесы и другие предметы, подвешенные на шнурках, нитках или цепочках, и только Галилей сумел увидеть то, что ускользало от внимания многих. Он проверил свой вывод опытами и тотчас же нашел практическое применение этому открытию. К концу своей жизни ученый доказал, что изобретенный им маятник может стать прекрасным регулятором для часов . С тех пор маятник служит в стенных часах. Галилей сделал часы с маятником одним из точнейших механизмов.
Сначала они были солнечными и водными, после стали огненными и песочными и, наконец, предстали в механическом виде. Но, каковы бы ни были их интерпретации, они всегда оставались тем, чем являются сегодня – источниками времени.

Сегодня наш рассказ о механизме, который будучи изобретенным еще в древности, и в наши дни остается верным помощником человека – часах .

Капля за каплей

Первый простейший прибор для измерения времени - солнечные часы - был изобретен вавилонянами примерно 3,5 тысячи лет назад. Небольшой стержень (гномон) укрепляли на плоском камне (кадран), разграфленном линиями, - циферблате, часовой стрелкой служила тень от гномона. Но поскольку «работали» такие часы только днем, то ночью им на замену приходила клепсидра - так греки называли водяные часы.

А изобрел водяные часы около 150 г. до н.э. древнегреческий механик-изобретатель Ктесибий из Александрии. Металлический или глиняный, а позже - стеклянный сосуд наполняли водой. Вода медленно, капля за каплей, вытекала, уровень ее понижался, и деления на сосуде указывали который час. Кстати, первый будильник на земле тоже был водяным, являясь одновременно школьным звонком. Его изобретателем считают древнегреческого философа Платона. Прибор служил для созыва учеников на занятия и состоял из двух сосудов. В верхний наливали воду, и оттуда она понемногу выливалась в нижний, вытесняя из него воздух. Воздух по трубочке устремлялся к флейте, и она начинала звучать.

Не менее распространенными в Европе и Китае были так называемые «огневые» часы. Первые «огневые» часы появились в начале XIII века. Эти очень простые часы в виде длинной тонкой свечи с нанесенной по ее длине шкалой, сравнительно удовлетворительно показывали время, а в ночные часы они еще и освещали жилище.

Свечи, применявшиеся для этой цели, были длиной около метра. К боковым сторонам свечи обычно прикрепляли металлические штырьки, которые по мере выгорания и таяния воска падали, и их удар по металлической чашке подсвечника был своего рода звуковой сигнализацией времени.

В течение целых столетий растительное масло служило не только для питания, но и в качестве часового механизма. На основе установленной экспериментально зависимости высоты уровня масла от продолжительности горения фитиля возникли масляные лампадные часы. Как правило, это бывали простые лампады с открытой фитильной горелкой и со стеклянной колбой для масла, снабженной часовой шкалой. Время в таких часах определялось по мере сгорания масла в колбе.

Первые песочные часы появились сравнительно недавно - всего тысячу лет назад. И хотя разного рода сыпучие индикаторы времени были известны давно, только должное развитие стеклодувного мастерства позволило создать относительно точный прибор. Но при помощи песочных часов можно было измерять лишь небольшие промежутки времени, обычно не более получаса. Таким образом, самые лучшие часы того периода могли обеспечить точность измерений времени ± 15-20 минут в сутки.

Без минут

Время и место появления первых механических часов доподлинно неизвестно. Впрочем, некоторые предположения на этот счет все же существуют. Самыми старыми, хотя и документально не подтвержденными сообщениями о них, считают упоминания, относящиеся к X веку. Изобретение механических часов приписывают Римскому Папе Сильвестру II (950 - 1003 гг. н.э.). Известно, что Герберт всю жизнь очень интересовался часами и в 996 году собрал первые в истории башенные часы для города Магдебурга. Так как эти часы не сохранились, по сей день остается открытым вопрос: какой принцип действия они имели.
Зато подлинно известен нижеприведенный факт. В любых часах должно быть что-то, что задает некий постоянный минимальный интервал времени, определяя темп отсчитываемых мгновений. Один из первых таких механизмов с билянцем (качающимся туда-сюда коромыслом) был предложен где-то около 1300 года. Важным его достоинством была легкость регулировки скорости хода путем перемещения грузиков на вращающемся коромысле. На циферблатах того периода была только одна стрелка - часовая, и еще эти часы каждый час били в колокол (английское слово «clock» - «часы» произошло от латинского «clocca» - «колокол»). Постепенно почти все города и церкви обзавелись часами, равномерно отсчитывающими время и днем, и ночью. Поверяли их, естественно, по Солнцу, подводя в соответствии с его ходом.

К сожалению, механические колесные часы исправно работали только на суше - так что эпоха Великих географических открытий прошла под звуки мерно пересыпающегося песка корабельных склянок, хотя больше всего в точных и надежных часах нуждались именно мореплаватели.

Зуб за зубом

В 1657 году голландский ученый Христиан Гюйгенс изготовил механические часы с маятником. И это стало следующей вехой в часовом деле. В его механизме маятник проходил между зубьями вилки, которая позволяла специальному зубчатому колесу проворачиваться ровно на один зуб за полкачания. Точность часов возросла многократно, но перевозить такие часы все равно было невозможно.

В 1670 году произошло кардинальное усовершенствование спускового механизма механических часов - был изобретен так называемый анкерный спуск, позволивший применить длинные секундные маятники. После тщательной настройки, в соответствии с широтой месторасположения и температурой в помещении, такие часы имели неточность хода всего несколько секунд в неделю.

Первые морские часы были изготовлены в 1735 году йоркширским столяром Джоном Харрисоном. Их точность составляла ± 5 секунд в сутки, и они уже были вполне пригодны для морских путешествий. Однако, оставшись недовольным своим первым хронометром, изобретатель трудился еще почти три десятка лет, прежде чем в 1761-м начались полномасштабные испытания усовершенствованной модели, которая уходила меньше чем на секунду в сутки. Первая часть награды была получена Харрисоном в 1764 году, после третьего длительного морского испытания и не менее длительных канцелярских мытарств.

Полностью вознаграждение изобретатель получил только в 1773 году. Испытывал часы небезызвестный нам капитан Джеймс Кук, который остался очень доволен этим необыкновенным изобретением. В судовом журнале он даже воздал хвалу детищу Харрисона: «Верному другу - часам, нашему проводнику, который никогда не подводит».

Тем временем механические маятниковые часы становятся предметом домашнего обихода. Первоначально изготовлялись только настенные и настольные часы, позже стали делать напольные. Вскоре после изобретения плоской пружины, заменившей маятник, мастер Питер Хенлейн из немецкого города Нюрнберга изготовил первые носимые часы. Их корпус, имевший только одну часовую стрелку, был выполнен из позолоченной латуни и имел форму яйца. Первые «Нюрнбергские яйца» были диаметром 100-125 мм, толщиной 75 мм и носили их в руке или на шее. Значительно позже циферблат карманных часов был накрыт стеклом. Подход к их оформлению стал более изощренным. Корпуса стали изготавливать в виде животных и других реальных объектов, а для украшения циферблата применяли эмаль.

В 60-х годах XVIII века швейцарец Абрахам Луи Бреге продолжает исследования в области носимых часов. Он делает их более компактными и в 1775 году открывает в Париже собственный часовой магазин. Однако «брегеты» (как прозвали эти часы французы) были по карману только очень богатым людям, простой же люд довольствовался стационарными приборами. Шло время и Бреге задумался над совершенствованием своих часов. В 1790 г. он изготавливает первые противоударные часы, а в 1783 в свет выходят его первые многофункциональные часы - «Королева Мария Антуанетта». Часы имели автоподзавод, минутный репетир, вечный календарь, независимый секундомер, «уравнение времени», термометр и индикатор запаса хода. Задняя крышка, выполненная из горного хрусталя, давала возможность увидеть работу механизма. Но неуемный изобретатель не остановился на этом. И в 1799 изготовил часы «Tact», получившие известность как «часы для слепых». Их владелец мог узнавать время, прикоснувшись к открытому циферблату, при этом ход часов от этого не сбивался.

Гальваника против механики

Но изобретения Бреге все еще были по карману только элитным слоям общества, решать же проблему массового производства часов пришлось другим изобретателям. В начале XIX столетия, совпавшем с бурным развитием технического прогресса, с проблемой хранения времени столкнулись почтовые службы, пытавшиеся обеспечить движение почтовых экипажей по расписанию. В результате они обзавелись новым изобретением ученых - так называемыми «возимыми» часами, принцип работы которых был схож с механизмом «брегетов». С появлением железных дорог такие часы получили в свое распоряжение и кондукторы.

Чем активнее развивалось трансатлантическое сообщение, тем насущнее становилась проблема обеспечения единства отсчета времени по разные стороны океана. В этой ситуации «возимые» часы уже не годились. И тут на помощь пришло электричество, в те времена называемое гальванизмом. Электрические часы решили проблему синхронизации на больших расстояниях - сначала на материках, а потом и между ними. В 1851 году кабель лег на дно Ла-Манша, в 1860-м - Средиземного моря, а в 1865-м - Атлантического океана.

Сконструировал первые электрические часы англичанин Александр Бэйн. К 1847 году он завершил работу над этими часами, сердцем которых был контакт, управляемый маятником, раскачиваемым электромагнитом. В начале XX века электрические часы окончательно вытеснили механические в системах хранения и передачи точного времени. Кстати, наиболее точными часами, основанными на свободных электромагнитных маятниках, были часы Уильяма Шортта, установленные в 1921 году в Эдинбургской обсерватории. Из наблюдения за ходом трех часов Шортта, изготовленных в 1924, 1926 и 1927 годах в Гринвичской обсерватории, определили их среднесуточную погрешность - 1 секунда в год. Точность часов со свободным маятником Шортта позволила обнаружить изменения продолжительности суток. И в 1931 году начался пересмотр абсолютной единицы времени - звездного времени, с учетом движения земной оси. Эта ошибка, которой до того пренебрегали, достигала в своем максимуме 0,003 секунды в сутки. Новая единица времени была позднее названа Средним звездным временем. Точность часов Шортта была непревзойденной, вплоть до появления кварцевых часов.

Время кварца

В 1937-м появились первые кварцевые часы, разработанные Льюисом Эссеном. Да, да, те самые, которые сегодня мы носим на руках, которые висят сегодня на стенах наших квартир. Изобретение было установлено в Гринвичской обсерватории, точность этих часов составляла около 2 мс/ сутки. Во второй половине ХХ века пришла пора часов электронных. В них место электрического контакта занял транзистор, а в роли маятника выступил кварцевый резонатор. Сегодня именно кварцевые резонаторы в наручных часах, персональных компьютерах, стиральных машинах, автомобилях, сотовых телефонах формируют время нашей жизни.

Итак, век песочных и солнечных часов канул в лету. И изобретатели не уставали баловать человечество высокотехнологичными новинками. Прошло время, и были построены первые атомные часы. Казалось бы, век их механических и электронных братьев тоже подошел к концу. А нет! Наибольшую точность и удобство в эксплуатации доказали именно эти два варианта часов. И именно они одержали победу над всеми их прародителями.

Наука 2.0 НЕпростые вещи.Часы


М еханические часы, по своему устройству напоминающие современные, появились в 14 веке в Европе. Это часы использующие гиревой или пружинный источник энергии, а в качестве колебательной системы у них применяется маятниковый или балансовый регулятор. Можно выделить шесть основных компонентов часового механизма:
1) двигатель;
2) передаточный механизм из зубчатых колес;
3) регулятор, создающий равномерное движение;
4) спусковой распределитель;
5) стрелочный механизм;
6) механизм перевода и заводки часов.

Первые механические часы называли башенными колесными часами, в движение они приводились опускающимся грузом. Приводной механизм представлял собой гладкий деревянный вал канатом к которому был примотан камень, выполняющий функцию гири. Под действием силы тяжести гири, канат начинал разматываться и вращать вал. Если этот вал через промежуточные колеса соединить с основным храповым колесом, связанным со стрелками-указателями, то вся эта система будет как-то указывать время. Проблемы подобного механизма в огромной тяжеловесности и необходимости гире куда-то падать и в не равномерном, а ускоренном вращении вала. Чтобы удовлетворить все необходимые условия, для работы механизма строили сооружения огромных размеров, как правило, в виде башни, высота которой была не ниже 10 метров, а вес гири достигал 200 кг, естественно все детали механизма были внушительных размеров. Столкнувшись с проблемой неравномерности вращения вала, средневековые механики поняли, что ход часов не может зависеть только от движения груза.

Механизм необходимо дополнить устройством, которое управляло бы движением всего механизма. Так появилось устройство сдерживающее вращение колеса, его назвали "Билянец" - регулятор.

Билянец представлял собой металлический стержень, расположенный параллельно поверхности храпового колеса. К оси билянца под прямым углом друг к другу прикреплены две лопатки. При повороте колеса зубец толкает лопатку до тех пор, пока она не соскользнет с него и не отпустит колесо. В это время другая лопатка с противоположной стороны колеса входит в углубление между зубцами и сдерживает его движение. Работая, билянец раскачивается. При каждом полном его качании храповое колесо передвигается на один зубец. Скорость качание билянца, взаимосвязана со скоростью движется храпового колеса. На стержень билянца навешивают грузы, обычно в форме шаров. Регулируя величину этих грузов и расстояние их от оси, можно заставить храповое колесо двигаться с различной скоростью. Конечно, эта колебательная система во многих отношениях уступает маятнику, но может использоваться в часах. Однако, любой регулятор остановится если постоянно не поддерживать его колебания. Для работы часов необходимо, чтобы часть двигательной энергии от главного колеса постоянно поступала к маятнику или билянцу. Эту задачу в часах выполняет устройство, которое называется спусковым распределителем.

Различные виды билянцев

Спусковой механизм самый сложный узел в механических часах. Через него осуществляется связь между регулятором и передаточным механизмом. С одной стороны, спуск передает толчки от двигателя к регулятору, что необходимые для поддержания колебаний регулятора. С другой стороны, подчиняет движение передаточного механизма закономерности движения регулятора. Точный ход часов зависит главным образом от спускового механизма, конструкция которого озадачила изобретателей.

Самый первый спусковой механизм был шпиндельный. Регулятором хода этих часов был так называемый шпиндель, представляющий собой коромысло с тяжелыми грузами, установленное на вертикальной оси и приводимое попеременно то в правое, то в левое вращение. Инерция грузов оказывала тормозящее воздействие на часовой механизм, замедляя вращение его колес. Точность хода подобных часов со шпиндельным регулятором была низка, а суточная погрешность превышала 60 минут.

Так как в первых часах не было специального механизма заводки, подготовка часов к работе требовала больших усилий. Несколько раз в день нужно было поднимать на большую высоту тяжелую гирю и преодолевать огромное сопротивление всех зубчатых колес передаточного механизма. Поэтому уже во второй половине XIV века главное колесо стали крепить таким образом, что при обратном вращении вала (против часовой стрелки) оно оставалось неподвижным. Со временем устройство механических часов становилось сложнее. Увеличилось число колес передаточного механизма т.к. механизм испытывал сильную нагрузку и быстро изнашивался, а груз опускался очень быстро и его приходилось поднимать по несколько раз на день. К тому же для создания больших передаточных отношений требовались колеса слишком большого диаметра, что увеличивало габариты часов. Поэтому стали вводить промежуточные дополнительные колеса, в задачу которых входило плавно увеличивать передаточные отношения.

Механизмы башенных часов

Башенные часы были капризным механизмом и требовали постоянного наблюдения (из-за силы трения нуждались в постоянной смазке) и участия обслуживающего персонала (подъем груза). Несмотря на большую погрешность суточного хода, долгое время эти часы оставались самым точным и распространенным прибором для измерения времени. Механизм часов усложнялся, с часами стали связывать другие приспособления, выполняющие разнообразные функции. В конце концов, башенные часы превратились в сложное устройство со многими стрелками, автоматическими подвижными фигурами, разнообразной системой боя, и великолепными украшениями. Это были шедевры искусства и техники одновременно.

Например, Пражские башенные часы, сооруженные в 1402 году, были оснащены автоматическими подвижными фигурками, которые во время боя разыгрывали настоящее театральное представление. Над циферблатом перед боем раскрывались два окошка из которых выходили 12 апостолов. Фигурка Смерти стояла на правой стороне циферблата и при каждом бое часов поворачивала косу, а человек стоявший рядом, кивал головой, подчеркивая роковую неизбежность а песочные часы, напоминали о конце жизни. По левую сторону циферблата находились еще 2 фигурки, одна изображала человека с кошельком в руках, который каждый час звенел лежавшими там монетами, показывая, что время - деньги. Другая фигура изображала путника, мерно ударявшего посохом в землю, показывая суетность жизни. После боя часов появлялась фигурка петуха, который трижды кричал. Последним в оконце появлялся Христос и благословлял всех стоявших внизу зрителей.

Другим примером башенных часов было сооружение мастера Джунелло Турриано, которому потребовалось 1800 колес для создания башенных часов. Эти часы воспроизводили дневное движение Сатурна, часы дня, годичное движение Солнца, движение Луны, а также всех планет в соответствии с птолемеевской системой мироздания. Для создания таких автоматов требовались особые программные устройства в движение которые приводил большой диск, управляемый часовыми механизмом. Все подвижные части фигур имели рычаги, которые то поднимались то опускались под действием вращения круга, когда рычаги попадали в особые вырезы и зубцы вращающегося диска. Также, башенные часы имели отдельный механизм для боя, который приводился в движение собственной гирей, причем многие часы по-разному отбивали полдень, полночь, час, четверть часа.

После колесных часов появились более усовершенствованные пружинные часы. Первые упоминания об изготовлении часов с пружинным двигателем относят ко второй половине 15 века. Изготовление часов с пружинным двигателем открыло путь к созданию миниатюрных часов. Источником движущей энергии в пружинных часах служила заведенная и стремящаяся развернуться пружина. Она представляла собой эластичную, закаленную стальную ленту, свернутую вокруг вала внутри барабана. Внешний конец пружины закреплялся за крючок в стенке барабана, внутренний - соединялся с валом барабана. Пружина стремилась развернуться и приводила во вращение барабан и связанное с ним зубчатое колесо. Зубчатое колесо в свою очередь передавало это движение системе зубчатых колес до регулятора включительно. Перед мастерами возникал ряд сложных технических задач. Основная из них касалась работы самого двигателя. Так как для правильного хода часов, пружина должна на протяжении длительного времени воздействовать на колесный механизм с одной и той же силой. Для чего необходимо заставить ее разворачиваться равномерно и медленно.

Изобретение запора, послужило толчком к созданию пружинных часов. Он представлял собой маленькую щеколду, помещавшуюся в зубья колес и позволявшую пружине раскручиваться только так, что одновременно поворачивался весь ее корпус, а вместе с ним колеса часового механизма.

Так как пружина имеет неодинаковую силу упругости на разных стадиях своего разворачивания, первым часовщикам приходилось прибегать к различным хитростям, чтобы сделать ее ход более равномерным. Позже, когда научились изготовлять высококачественную сталь для часовых пружин, в них отпала необходимость. В современных недорогих часах пружину просто делают достаточно длинной, рассчитанной примерно на 30-36 часов работы, но при этом рекомендуют заводить часы раз в сутки в одно и то же время. Специальное приспособление мешает пружине при заводе свернуться до конца. В результате ход пружины используется только в средней части, когда сила ее упругости более равномерная.

Следующим шагом к усовершенствованию механических часов было открытие законов колебания маятника сделанное Галилеем. Создание маятниковых часов состояло в соединении маятника с устройством для поддержания его колебаний и их отсчета. Фактически, маятниковые часы - это усовершенствованные пружинные часы.

В конце жизни Галилей стал конструировать такие часы, но дальше разработок дело не пошло. А уже после смерти великого ученого первые маятниковые часы были созданы его сыном. Устройство этих часов держалось в строгом секрете, поэтому они не оказали никакого влияния на развитие техники.

Независимо от Галилея в 1657 году механические часы с маятником собрал Гюйгенс.

При замене коромысла на маятник первые конструкторы столкнулись с проблемой. Она заключалась в том, что маятник создает изохронные колебания только при малой амплитуде, между тем шпиндельный спуск требовал большого размаха. В первых часах Гюйгенса размах маятника достигал 40-50 градусов, что нарушало точность хода. Для компенсации этого недостатка, Гюйгенсу пришлось проявить изобретательность и создать особый маятник, который в ходе качания изменял свою длину и колебался по циклоидной кривой. Часы Гюйгенса обладали несравнимо большей точностью, чем часы с коромыслом. Их суточная погрешность не превышала 10 секунд (в часах с коромысловым регулятором погрешность колебалась от 15 до 60 минут). Гюйгенс изобрел новые регуляторы как для пружинных, так и для гиревых часов. Механизм стал гораздо совершеннее, когда в качестве регулятора начали использовать маятник.

В 1676 году Клемент, английский часовщик изобрел якорно-анкерный спуск, который идеально подходил к маятниковым часам, имевшим небольшую амплитуду колебания. Эта конструкция спуска представляла собой ось маятника на которую насаживался якорь с палетами. Раскачиваясь вместе с маятником, палеты попеременно внедрялись в ходовое колесо, подчиняя его вращение периоду колебания маятника. Колесо успевало повернуться на один зуб при каждом колебании. Такой спусковой механизм позволял маятнику получать периодические толчки, которые не давали ему остановиться. Толчок происходил, когда ходовое колесо, освободившись от одного из зубьев якоря, ударялось с определенной силой о другой зуб. Этот толчок передавался от якоря к маятнику.

Изобретение маятникового регулятора Гюйгенса произвело переворот в технике часового дела. Гюйгенс много сил потратил на усовершенствование карманных пружинных часов. Основная проблема которых была в шпиндельном регуляторе, так как они постоянно находились в движении, тряслись и покачивались. Все эти колебания оказывали негативное воздействие на точность хода. В 16 веке часовщики стали заменять двуплечный билянец в виде коромысла круглым колесиком-маховиком. Эта замена значительно улучшила работу часов, но осталась неудовлетворительной.

Важное усовершенствование регулятора произошло в 1674 году, когда Гюйгенс присоединил к колесику-маховику спиральную пружинку - волосок.

Теперь при отклонении колесика от нейтрального положения волосок воздействовал на него и старался возвратить на место. Однако массивное колесико проскакивало через точку равновесия и раскручивалось в другую сторону до тех пор, пока волосок снова не возвращал его назад. Так был создан первый балансовый регулятор или балансир, свойства которого были подобны свойствам маятника. Выведенное из состояния равновесия, колесико балансира начинало совершать колебательные движения вокруг своей оси. Балансир имел постоянный период колебания, но мог работать в любом положении, что очень важно для карманных и наручных часов. Усовершенствование Гюйгенса произвело среди пружинных часов такой же переворот, как введение маятника в стационарные настенные часы.

Англичанин Роберт Гук независимо от голландца Христиана Гюйгенса также разработал колебательный механизм, который основан на колебаниях подпружиненого тела - балансирный механизм. Балансирный механизм применяется, как правило, в переносных часах, так как может эксплуатироваться в разных положениях, чего не скажешь об маятниковом механизме, который используют в настенных и напольных часах т. к. для него важна неподвижность.

В состав балансирного механизма входят:
Балансирное колесо;
Спираль;
Вилка;
Градусник - рычаг регулировки точности;
Храповик.

Для регулирования точности хода используют градусник - рычаг, который выводит из работы некоторую часть спирали. Колесо и спираль делают из сплавов с небольшим коэффициентом температурного расширения из-за чувствительности к колебаниям температуры. Также возможно изготовить колесо из двух разных металлов, чтобы оно изгибалось при нагреве (биметаллический баланс). Для повышения точности хода баланс снабжался винтами, они позволяют точно сбалансировать колесо. Появление прецизионных станков-автоматов избавило часовщиков от балансировки, винты на балансе стали чисто декоративным элементом.

Изобретение нового регулятора требовало новой конструкции спуска. Следующие десятилетия разные часовщики разрабатывали разные варианты спусковых устройств. В 1695 году Томасом Томпионом был изобретен наиболее простой цилиндрический спуск. Спусковое колесо Томпиона было снабжено 15-ю, особой формы, зубьями «на ножках». Сам цилиндр представлял собой полую трубку, верхний и нижний концы которой были плотно забиты двумя тампонами. На нижнем тампоне был насажен балансир с волоском. При колебании балансира в соответствующую сторону вращался и цилиндр. На цилиндре находился вырез в 150 градусов, проходящий на уровне зубцов спускового колеса. Когда колесо двигалось, его зубья попеременно одно за другим входили в вырез цилиндра. Благодаря этому изохронное движение цилиндра передавалось спусковому колесу и через него - всему механизму, а балансир получал импульсы, поддерживающие его.

С развитием науки часовой механизм усложнялся, а точность хода повышалась. Таким образом, в начале восемнадцатого века для балансира и шестеренок впервые были использованы рубиновые и сапфировые опоры, что позволило повысить точность и запас хода и уменьшить трение. Постепенно карманные часы дополнялись все более сложными устройствами и некоторые образцы имели вечный календарь, автоподзавод, независимый секундомер, термометр, индикатор запаса хода, минутный репетир, а работу механизма давала возможность увидеть задняя крышка, выполненная из горного хрусталя.

Величайшим достижением в часовой промышленности и теперь считается изобретение в 1801 году Авраамом Луи Бреге турбийона. Бреге удалась решить одну из самых больших проблем часовых механизмов его времени, он нашел способ побороть гравитацию и связанные с ней погрешности хода. Турбийон - это механическое устройство, созданное для повышения точности хода часов за счет компенсации влияния гравитации на анкерную вилку, и равномерного распределения смазки трущихся поверхностей механизма при смене вертикальных и горизонтальных положений механизма.

Турбийон - один из наиболее впечатляющих механизмов в современных часах. Подобный механизм может производиться только искусными мастерами, а способность фирмы изготовить турбийон является признаком ее принадлежности к часовой элите.

Механические часы во все времена были предметом восхищения и удивления, они завораживали красотой исполнения и трудностью работы механизма. Так же они всегда радовали своих хозяев уникальными функциями и оригинальным дизайном. Механические часы и сегодня являются предметом престижа и гордости, способны подчеркнуть статус и всегда покажут точное время.