Презентация на тему "Радиация – проблемы и перспективы…". Воздействие радиации на человека Мировыми лидерами в производстве ядерной электроэнергии являются

РАДИАЦИЯ И ЕЕ ВОЗДЕЙСТВИЕ НА БИОЛОГИЧЕСКИЕ ОБЪЕКТЫ

УРОК-КОНФЕРЕНЦИЯ

9,11 классы


Цель урока: Познакомить учащихся с последними научными данными о радиации и её воздействии на биологические объекты

Задачи урока:

  • Познакомить учащихся с естественными и искусственными источниками радиации, механизмом её воздействия на ткани организма и со способами защиты от радиоактивного излучения;
  • Научить учащихся самостоятельно работать с дополнительной литературой, составлять и делать доклады по заданной теме, развивать навыки по чтению и составлению информационных таблиц;
  • Развить интерес к физике.

План проведения конференции

Источники и дозы радиации

  • Естественный радиационный фон.

1) Внешнее облучение:

а) космическое излучение

б) земная радиация

2) Внутреннее облучение

2. Искусственные источники радиации.

  • Ядерные взрывы
  • Атомная энергетика
  • Чернобыльская трагедия

Воздействие радиации на биологические объекты

  • Воздействие ионизирующего излучения на ткани организма
  • Проникающая способность радиоактивного излучения, способы защиты от радиации и дозы облучения

ЕСТЕСТВЕННЫЙ РАДИАЦИОННЫЙ ФОН

  • Внешнее облучение:

а) космическое излучение;

б) земная радиация.

2. Внутреннее облучение.





  • Люди, живущие на уровне моря, получают дозу излучения в 0,3 мЗв/г.
  • С ростом высоты над уровнем моря растет и уровень облучения.



Земная радиация

  • Земная радиация – излучение радиоактивных элементов, входящих в состав земной коры.

Образование:

  • 3 млрд. лет

Дожили до наших дней:

  • 23 2 Th T=14 млрд. лет
  • 238 U T=4,5 млрд. лет
  • 235 U Т=0,7 млрд. лет

и продукты их распада: радиоактивный калий, рубидий, радий, радон, полоний, висмут, свинец и т. д.




  • Эффективная доза внешнего облучения от земных источников - 0,35 мЗв в год





Радиоактивный йод-131 через траву попадает в мясо и молоко коров, а затем и в организм человека.

Грибы и лишайники способны накапливать в себе достаточно большие дозы радиоактивных изотопов свинца-210 и, особенно полония 210.




Искусственные источники радиации

  • Источники излучения, используемые в медицине.
  • Ядерные взрывы.
  • Атомная энергетика.
  • Чернобыльская трагедия.

Источники излучения, используемые в медицине

  • Диагностика
  • Метод лечения




Статистика

  • На каждую 1000 жителей приходится от 300 до 900 рентгенологических обследований;
  • Средняя эквивалентная доза, получаемая человеком от этих обследований, составляет 20% от естественного радиационного фона, т.е. 0,38 мЗв в год.

БЕЗОПАСНОСТЬ

  • Воздействие ионизирующего излучения
  • Радиоизотопы
  • Радиоактивне отходы

Атомная бомба и ядерные взрывы

Мы сделали работу

за дьявола

Роберт Оппенгеймер



Первая атомная бомба СССР «РДС-1»

В СССР первая атомная бомба была создана усилиями советских ученых, которыми руководил И. В. Курчатов, а также благодаря информации советских разведчиков, работавших в американском ядерном центре в Лос-Аламосе. Супруги Розенберги, главные подозреваемые в передаче СССР информации о бомбе, были казнены по приговору американского суда. Фрагмент представлен РГАКФД.


«РДС-1»

Ядерный заряд впервые испытан 29 августа 1949 года на Семипалатинском полигоне. Мощность заряда до 20 килотонн тротилового эквивалента.


Первая термоядерная боеголовка для межконтинентальной баллистической ракеты

Мощность заряда до 3 мегатонн тротилового эквивалента


Я не знаю с каким оружием будет Третья Мировая война, но я точно знаю, что Четвертая Мировая будет с камнями и палками

Альберт Эйнштейн

Ядерные взрывы




Последствия

Значительная часть Хиросимы была разрушена, убито и ранено св. 140 тыс. человек.

Разрушина треть города Нагасаки, было убито и ранено ок. 75 тыс. жителей.




Радионуклиды

Т = 5730 лет

Т = 30 лет

Т = 64 дня

Т = 30 лет


АТОМНАЯ ЭНЕРГЕТИКА

В России атомных электростанций очень мало и составляет 11 % от всей энергетики страны


АЭС РАБОТАЮТ НА ОБОГАЩЕННОМ УРАНЕ. В СОВРЕМЕННОМ РЕАКТОРЕ ЗА СУТКИ РАБОТЫ ОСУЩЕСТВЛЯЕТСЯ ДЕЛЕНИЕ 3 КГ УРАНА. Э ТО В 3 РАЗА БОЛЬШЕ, ЧЕМ ПРИ ВЗРЫВЕ БОМБЫ В Х ИРОСИМЕ. ЭКВИВАЛЕНТНАЯ ДОЗА ОБЛУЧЕНИЯ, ДАВАЕМАЯ АТОМНОЙ ЭНЕРГЕТИКОЙ, НЕ ПРИВЫШАЕТ 0,1% ЕСТЕСТВЕННОГО ФОНА И СОСТАВЛЯЕТ НЕ БОЛЕЕ 0,0019 МЗВ В ГОД.




КАРТА РАДИОАКТИВНОГО ЗАГРЯЗНЕНИЯ ИЗОТОПОМ ЦЕЗИЯ-137

  • ██ закрытые зоны (более 40 Ки /км²)
  • ██ зоны постоянного контроля (15-40 Ки/км²)
  • ██ зоны периодического контроля (5-15 Ки/км²)
  • ██ 1-15 Ки/км²

ДОЗА ОБЛУЧЕНИЯ

  • 170 тысяч человек получили дозу облучения от10 до 50 мЗв
  • 90 тысяч от 50 до 100 мЗв

50 5 000 000 10-20 " width="640"

Период

Ликвидаторы

1986-1989

Эвакуированные

Количество (чел.)

Жители зон со «строгим контролем»

Доза ( мЗв )

1986-2005

Жители других загрязнённых зон

1986-2005

5 000 000



Воздействие радиации на биологически объекты

  • Воздействие ионизирующего излучения на ткани организма.
  • Проникающая способность радиоактивного излучения и способы защиты от радиации.
  • Дозы облучения.


Рентгеновское и

радиоактивное ионизация вещества

Излучение

образование свободных

радикалов

модификация клеток

лучевая болезнь


750 мЗв Тяжелая степень лучевой болезни при 4.5 Зв " width="640"

ВЛИЯНИЕ НА ЗАРОДЫШЕЙ

  • Допустимая доза поглощенного излучения до 5 мЗв в год
  • Допустимая доза разового облучения до 100 мЗв
  • Лучевую болезнь вызывают 750 мЗв
  • Тяжелая степень лучевой болезни при 4.5 Зв


ВЛИЯНИЕ НА РАСТЕНИЯ

МУТАЦИЯ ТАБАКА


МУТАЦИИ ЧЕЛОВЕКА


Эквивалентная доза

Последствия общего облучения

0,1 – 0,5 Зв(10 – 50 бэр)

Гибель отдельных клеток крови и половых клеток, временная стерильность мужчин

0,5 – 1,0 Зв(50 – 100 бэр)

Нарушение в работе кроветворной системы, уменьшение числа лимфоцитов

3 – 5 Зв(300 – 500 бэр)

~ 50% облученных умирает от лучевой болезни в течение 1 – 2 месяцев. Основная причина – поражение клеток костного мозга, результатом которого является снижение количества лейкоцитов в крови

10 – 50 Зв(1000 – 5000 бэр)

100% облученных умирают через 1- 2 недели вследствие внутренних кровоизлияний в желудочно-кишечном тракте в результате гибели клеток слизистых оболочек желудка и кишечника

Эквивалентная доза

1 Зв(100 бэр)

Вид заболевания

Число случаев на 1000 человек

лейкозы

Рак щитовидной железы

Рак легких

Рак молочной железы

Хроническое облучение родителей с эквивалентной дозой 1 Зв(100 бэр) за 30 лет может привести к появлению примерно 2 генетических заболеваний на 1000 рожденных детей.




Вид излучения

Длина свободного пробега

в воздухе

Альфа-лучи

Опасное воздействие

В биологич. тканях

до нескольких сантиметров

Бета-лучи

до нескольких метров

Гамма-лучи

около 100 м

радиоактивное загрязнение кожи

до нескольких сантиметров

воздействие на кожу, слизистую оболочку глаз, легкие и желудочно-кишечного тракта

ионизация вещества


Способы защиты от радиации:

  • удаление от источника излучения;
  • использование преграды из поглощающих излучение материалов;
  • спец. одежда;

ТЕСТ

  • Какие из перечисленных ниже источников естественного радиационного фона является источником внешнего облучения человека?
  • γ –излучение естественных радиоактивных изотопов земной коры.
  • Космические лучи.
  • Естественные радиоактивные изотопы калия 40 и углерода 14 в организме человека.

А. 1 Б. 2 В.3 Г. 1 и 2.

  • Какие из перечисленных ниже источников естественного радиационного фона являются источником внутреннего облучения человека?
  • γ - излучение естественных радиоактивных изотопов земной коры.
  • Естественные радиоактивные изотопы калия 40 и углерода 14 в продуктах питания Радон в атмосферном воздухе.
  • Естественные радиоактивные изотопы калия 40 и углерода 14 в продуктах питания
  • Радон в атмосферном воздухе.

А. 1 Б. 2 В.3 Г. 2 и 3.

  • Какой радиоактивный газ вносит наибольший вклад во внутреннее облучение?

А неон Б. радон В. аргон Г. ксенон

  • Из каких строительных материалов не следует строить свой дом?

А. дерево Б. кирпич В. бетон Г. гранит и глинозем

5. Какой вид радиоактивного излучения обладает наибольшей проникающей способностью?

6. Какой вид радиоактивного излучения наиболее опасен при внутреннем облучении человека?

А. β –излучение Б. γ –излучение В. α –излучение Г. все три вида излучения

7. В каких из перечисленных ниже единицах измеряется эквивалентная доза?

А. Рентген Б. Рад В. Зиверт Г. Грей

8. Каково примерное значение эквивалентной дозы от естественного фона облучения на уровне моря за 1 год?

А. 0 зв Б. 0.3 мЗв В. 365 мЗв Г. 50 мЗв

9. Какое значение эквивалентной дозы за год принято в качестве предельно допустимой для лиц, профессионально связанных с использованием источников ионизирующей радиации?

А. 0 зв Б. 2 мЗв В. 50 мЗв Г. 0,1 зв

10. Какой из приведенных ниже значений эквивалентной дозы является смертельно опасным для человека при однократном общем излучении?

А. 2 мЗв Б. 0,1 зв В. 0,5 зв Г. 5 зв


Слайд 1

Биологическое действие радиоактивных изотопов
Радиация и жизнь

Слайд 2

Ядерная энергия- источник всего существующего
Радиоактивность-это природное явление, не зависящее от того открыли его ученые или нет. Радиоактивными являются почва, осадки, горные породы, вода. Солнце и звезды сияют благодаря ядерным реакциям, происходящим в их недрах. Открытие этого явления повлекло за собой его использование. Сейчас нет ни одной отрасли без ее использования – медицина, техника, энергетика, космос, открытие новых элементарных частиц, это и ядерное оружие, ядерные отходы, АЭС.

Слайд 3

Возбужденные атомы и ионы обладают сильной химической активностью, поэтому в клетках организма появляются новые химические соединения, чуждые здоровому организму. Под действием ионизирующей радиации разрушаются сложные молекулы и элементы клеточных структур. В человеческом организме нарушается процесс кроветворения, приводящий к дисбалансу белых и красных кровяных телец. Человек заболевает белокровием, или так называемой лучевой болезнью. Большие дозы облучения приводят к смерти.
Радиоактивные излучения оказывают сильное биологическое действие на ткани живого организма

Слайд 4

Словарь терминов: Ионизирующее излучение Доза излучения Экспозиционная доза Качество облучения Эффективная эквивалентная доза Критические органы Радиопротекторы
Ядерные ионизирующие излучения
1)Альфа-излучение; 2)Бета-излучение; 3)Рентгеновское и гамма-излучение; 4)Поток нейтронов; 5)Поток протонов.

Слайд 5

Источники ионизирующих излучений
Естественные Залежи руд,обладающие альфа- или бета- активностью(торий-232,уран-238,уран-235, радий -226,радон-222, калий-40,рубидий-87); Космическое излучение звёзд(потоки быстрых заряженных частиц и гамма квантов)
Искусственные Изотопы, выделенные человеком; Приборы, устройства, в которых используются радиоактивные изотопы; Бытовая техника(компьютеры, возможно сотовые телефоны, СВЧ-печи и т.п.)

Слайд 6

Различные радиоактивные вещества по-разному проникают в организм человека. Это зависит от химических свойств радиоактивного элемента. радиоактивные вещества, могут проникать в организм с пищей и водой, через органы пищеварения они распространяются по всему организму. Радиоактивные частицы из воздуха во время дыхания могут попасть в лёгкие. В этом случае говорят о внутреннем облучении. Кроме того, человек может подвергнуться внешнему облучению от источника радиации, который находится вне его тела. Ликвидаторы аварии на ЧАЭС в основном были подвергнуты внешнему облучению.
«Входные ворота радиации»

Слайд 7

Слайд 8

Воздействие радиации на ткани и органы человека, восприимчивость к ионизирующему излучению.

Слайд 9

Ионизирующее излучение при действии на живые организмы прежде всего приводит к ионизации молекул воды, всегда присутствующих в живых тканях, и молекул различных белковых веществ. При этом в живых тканях образуются свободные радикалы- сильные окислители, обладающие большой токсичностью, меняющие течение жизненных процессов. Если человек систематически подвергается воздействию даже очень малой дозы излучения или в его организме откладываются радиоактивные вещества, то может развиться хроническая лучевая болезнь.

Слайд 10

КЛАССИФИКАЦИЯ ВОЗМОЖНЫХ ПОСЛЕДСТВИЙ ОБЛУЧЕНИЯ ЛЮДЕЙ
Радиационные эффекты Облучения людей
Соматические (последствия воздействия облучения, сказывающиеся на самом облученном, а не на его потомстве)
острая лучевая болезнь
хроническая лучевая болезнь
локальные лучевые повреждения (лучевой ожог, катаракта глаз, повреждение половых клеток)
Соматико-стохастические (трудно обнаруживаемые, так как они незначительны и имеют длительный скрытый период, измеряемый десятками лет после облучения)
сокращение продолжительности жизни
злокачественные изменения крове образующих клеток
опухоли разных органов и клеток
Генетические (врожденные уродства, возникающие в результате мутаций, изменения наследственных свойств и других нарушений в половых клеточных структурах облученных людей)

Слайд 11

Радиоактивные вещества вызывают необратимые изменения в структуре ДНК.

Слайд 12

Даже малые дозы радиации не безвредны и их влияние на организм и здоровье будущих поколений до конца не изучено. Однако можно предположить, что радиация может вызвать, прежде всего, генные и хромосомные мутации, что в последствии может привести к проявлению рецессивных мутаций.

Слайд 13

Существенный вклад в облучение человека вносит радон и продукты его распада. Основным источником этого радиоактивного инертного газа является земная кора. Проникая через трещины и щели в фундаменте, полу и стенах, радон задерживается в помещениях. Другой источник радона в помещении - это строительные материалы (бетон, кирпич и т.д) Радон может поступать в дома также с водой (особенно если она подается из артезианских скважин), при сжигании природного газа и т.д. Радон в 7,5 раз тяжелее воздуха. Основную часть дозы облучения от радона человек получает, находясь в закрытом, непроветриваемом помещении; При длительном поступлении радона и его продуктов в организм человека многократно возрастает риск возникновения рака легких
невидимый, не имеющий ни вкуса, ни запаха, тяжелый газ

Слайд 14

Радиация может вызвать серьезные последствия, возникающие через часы или дни, и долговременные последствия, проявляющиеся через годы или десятилетия. Вред, наносимый человеческому организму, зависит от дозы радиации. Доза, в свою очередь, определяется двумя обстоятельствами: мощностью радиации (количеством радиации, излучаемой источником за час); длительностью воздействия. Чем больше доза радиации, тем серьезнее последствия. Человек, получивший очень большую дозу за короткий период времени, скорее всего, умрет через несколько часов.
К чему может привести радиация

Презентацию подготовила ученица 11 класса «А» МОУ «Школы №24» Трусова Юлия Преподаватель физики – Харитошина О.В. Радиация и радиоактивность.

Что такое радиация? Виды радиации. Способы защиты от радиации.

Радиация (от лат. radiātiō «сияние», «излучение») : Радиация, или ионизирующее излучение - это частицы и гамма-кванты, энергия которых достаточно велика, чтобы при воздействии на вещество создавать ионы разных знаков. Радиацию нельзя вызвать с помощью химических реакций. Что такое радиация? Другие значения радиации

Радиация в радиотехнике - исходящий от любого источника поток энергии в форме радиоволн (в отличие от излучения - процесса испускания энергии); Радиация - ионизирующее излучение; Радиация - тепловое излучение; Солнечная радиация - излучение Солнца электромагнитной и корпускулярной природы; Радиация - синоним излучения. Другие значения радиации

Радиоизлучение (радиоволны, радиочастоты) - электромагнитное излучение с длинами волн 5×10 −5 -10 10 метров и частотами, соответственно, от 6×10 12 Гц и до нескольких Гц. Радиоволны используются при передаче данных в радиосетях.

Ионизирующее излучение: - в самом общем смысле - различные виды микрочастиц и физических полей, способные ионизировать вещество. - в более узком смысле к ионизирующему излучению не относят ультрафиолетовое излучение и излучение видимого диапазона света, которое в отдельных случаях также может быть ионизирующим. Излучение микроволнового и радиодиапазонов не является ионизирующим.

Тепловое излучение - электромагнитное излучение с непрерывным спектром, испускаемое нагретыми телами за счёт их тепловой энергии.

Солнечная радиация - электромагнитное и корпускулярное излучение Солнца.

Излучение - процесс испускания и распространения энергии в виде волн и частиц.

Альфа-частицы Бета-частицы Гамма-излучение Нейтроны Рентгеновские лучи Виды радиации:

Альфа-частицы - это относительно тяжелые частицы, заряженные положительно, представляют собой ядра гелия.

Бета-частицы - обычные электроны. нейтрон электрон протон

Гамма-излучение - имеет ту же природу, что и видимый свет, однако гораздо большую проникающую способность.

Нейтроны - это электрически нейтральные частицы, возникающие в основном рядом с работающим атомным реактором, доступ туда должен быть ограничен.

Рентгеновские лучи - похожи на гамма-излучение, но имеют меньшую энергию. Кстати, Солнце - один из естественных источников таких лучей, но защиту от солнечной радиации обеспечивает атмосфера Земли.

Если существует реальная угроза облучения, то безусловно самыми первыми способами защиты от радиации являются такие меры, как: Укрытие в помещении, где закрыты все окна и двери Защита органов дыхания Защита тела Способы защиты от радиации. выход

Радиоактивность содержание

Что такое радиоактивность? Какая она бывает? Кто и как обнаружил радиоактивность? Что вокруг нас радиоактивно?

Радиоактивность (от лат. radius «луч» и āctīvus «действенный»): свойство атомных ядер самопроизвольно (спонтанно) изменять свой состав путём испускания элементарных частиц или ядерных фрагментов. Радиоактивностью называют также свойство вещества, содержащего радиоактивные ядра. Что такое радиоактивность?

Какая она бывает? Радиоактивность самопроизвольный распад ядер элементов, встречающихся в природе. самопроизвольный распад ядер элементов, полученных искусственным путем через соответствующие ядерные реакции. Естественная Искусственная

История радиоактивности началась с того, как в 1896 году А. Беккерель занимался люминесценцией и исследованием рентгеновских лучей. Кто и как обнаружил радиоактивность? Дата рождения 15 декабря 1852 года в Париже, в семье ученых. Дата смерти 25 августа 1908 года в Бретань (Франция)

Что вокруг нас радиоактивно? Человек Радон Техногенная радиоактивность выход

Интернет: http://ru.wikipedia.org/ http://images.yandex.ru/ Учебник: Физика 11 кл., авторы Г.Я.Мякишев и Б.Б.Буховцев. Используемая литература:

Спасибо за внимание! Спасибо за внимание!

Презентация на тему "Радиация - проблемы и перспективы…" по физике в формате powerpoint. Познавательная презентация для школьников 11 класса рассказывает о том, что такое радиация, какие существуют виды и источники радиации, о ее плюсах и минусах. Автор презентации: преподаватель Каховская Т.Н.

Фрагменты из презентации

Солнце - источник радиации

Прошло более двадцати столетий, и перед человечеством вновь встала подобная дилемма: атом и радиация, которую он испускает, могут стать для нас источником благоденствия или гибели, угрозой или надеждой, лучшей или худшей вещью.

Хиросима и Нагасаки

Итак, радиация двулика и ее злое лицо нам угрожает. Но способны ли мы в полной мере оценить ее доброе лицо? Односторонний подход обычно приводит к крайней, односторонней оценке. Действительно, как невозможно всегда лишь восхвалять животворные солнечные лучи, так нельзя и радиоактивному излучению приписывать только разрушительные свойства. Поговорим об этом подробнее.

Задачи:

  • знать естественные и искусственные источники радиации, плюсы и минусы радиации, защиту от радиоактивного излучения;
  • уметь самостоятельно приобретать новые знания с использованием ИКТ, составлять и делать доклады по заданной теме, анализировать полученную информацию и делать научно обоснованные выводы; развивать коммуникативные умения;
  • разумно использовать достижения науки и технологии для дальнейшего развития человеческого общества, обеспечивать безопасность своей жизни.

Радиация - это самопроизвольный распад ядер атомов.

Виды радиации:

  • α - частицы;
  • β - частицы;
  • γ - излучение;
  • нейтроны;
  • рентгеновское излучение.

Источники радиации

Естественные:
  • Космические, солнечные лучи;
  • Газ радон;
  • Радиоактивные изотопы в горных породах (уран 238,торий 232,калий 40, рубидий 87);
  • Внутреннее облучение человека за счёт радионуклидов (с водой и пищей).
Созданные человеком:
  • Медицинские процедуры и методы лечения;
  • Атомная энергетика;
  • Ядерные взрывы;
  • Мусорные свалки;
  • Строительные материалы;
  • Сжигаемое топливо;
  • Телевизоры, компьютеры и другая бытовая техника;
  • Антиквариат.

Радиация в медицине

Радиация используется в медицине в диагностических целях и для лечения. Одним из самых распространенных медицинских приборов является рентгеновский аппарат.

Радиация в сельском хозяйстве

Исследования в области - радиационной генетики и радиационной селекции дали около сотни новых разновидностей высокоурожайных культурных растений, устойчивых к различным заболеваниям.

Мировыми лидерами в производстве ядерной электроэнергии являются:

  1. США (836,63 млрд кВт·ч/год),
  2. Франция (439,73 млрд кВт·ч/год),
  3. Япония (263,83 млрд кВт·ч/год),
  4. Россия (160,04 млрд кВт·ч/год),
  5. Корея (142,94 млрд кВт·ч/год)
  6. Германия (140,53 млрд кВт·ч/год).

АЭС России

Калининская АЭС.

Центральная атомная станция России. Она расположена рядом с городом Удомлей в 150 км к северу от Твери. Производимая энергия направляется в восемь регионов страны. Введена в эксплуатацию в 1975 году.

Балаковская АЭС

Крупнейший в России производитель электроэнергии. Введена в эксплуатацию в 1985 году. Ежегодно станция вырабатывает больше энергии, чем любая другая атомная, тепловая или гидроэлектростанция страны. Станция обеспечивает Поволжье, Урал, Сибирь и центр.

Атомные электростанции

  • АЭС оказались небезопасными.
  • До Чернобыльской аварии самой тяжелой в ядерной энергетике считалась авария 1979 года на американской АЭС Тримайл -Айленд близ г.Гаррисберга (штат Пельсинвания).
  • Казалось бы, АЭС очень выгодные станции! Но вся беда в том, что в случае аварии их радиоактивное топливо попадает в окружающую среду, вызывая смертельно опасную для человека лучевую болезнь и заражая местность на 300 лет.
  • Зараженную территорию обносят колючей проволокой, она становится непригодной для жизни.

Последствия воздействия радиации

  • Лучевая болезнь
  • Бесплодие
  • Генетические мутации
  • Поражения органов зрения
  • Поражения нервной системы
  • Ускоренное старение организма
  • Нарушение психического и умственного развития
  • Раковые заболевания.

Плюсы АЭС

  • Малое количество ядерного горючего.
  • Низкие транспортные расходы.
  • Нет привязки к крупным рекам или месторождениям горючих ископаемых
  • Низкая стоимость электроэнергии.
  • Использование ядерного топлива не сопровождается процессом горения и выбросом в атмосферу вредных веществ и парниковых газов.
  • На сегодняшний день в мире ведутся разработки подземных и плавучих АЭС и ядерных двигателей для космических летальных аппаратов.

Минусы АЭС

  • Ядерные станции могут представлять глобальную угрозу.
  • Аварии на атомных станциях влекут за собой опасные экологические последствия на обширных территориях, затрагивая огромные массы людей.
  • Геоэкологические следствия аварии на АЭС сохраняют свою остроту в течение очень длительного времени.
  • Воздушные течения и вода распространяют радиоактивные выбросы на территории, весьма удаленные от АЭС(на ЧАЭС высота выбросов из аварийного блока достигла высоты 1200 м)
  • Радиоактивное топливо попадает в окружающую среду, вызывая смертельно опасную для человека лучевую болезнь и заражая местность на 300 лет.
  • Проблема захоронения радиоактивных отходов.

Радиация-друг

  • Использование в медицине (рентгенодиагностика, лучевая терапия и т.п.)
  • Радиационная генетика и селекция;
  • Радиоактивный громоотвод;
  • Стерилизация и сохранение пищевых продуктов;
  • Восстановление фотографий;
  • Использование ионизирующих излучений в промышленности.

Радиация-враг

  • Облучение;
  • Радиоактивный мусор;
  • Опасность «мирной» радиации;
  • Генетические последствия облучения.

А. Эйнштейн:

«Обнаруженная сила урана угрожает цивилизации и людям не больше, чем когда мы зажигаем спичку. Дальнейшее развитие человечества зависит не от уровня технических достижений, а от его моральных принципов».

МОУ СОШ №44 Презентация На тему: Радиация и ее влияние на живые организмы Выполнили ученики: Девивье Анатолий и Овчаров Константин 9 класса г.Томск. Радиация окружает нас везде. Мы родились и живём в среде естественных и искусственных проникающих радиоактивных излучений. Обычно человек подвергается двум видам облучения: внешнему и внутреннему. К внешним источникам относят космическое облучение, а к внутренним, когда в организм человека попадают продукты питания, воздух заражённый радиацией.. Человек в естественных условиях облучается от источников как внешних, так внутренних. Также существует искусственная радиация т.е. созданная человеком. Она может идти как во вред человеку, так и в пользу (для лечения серьёзных заболеваний). Радиация сама по себе может быть очень полезной для человека, конечно нужно уметь ей пользоваться чтобы использовать для оздоровительных процедур и в разнообразных предприятиях.. Радиоактивность (от латинского radio излучаю, radus - луч и activus действенный), такое название получило открытое явление, которое оказалось привилегией самых тяжелых элементов периодической системы Д.И.Менделеева. «Радиоактивность - это самопроизвольное (спонтанное) превращение неустойчивого изотопа химического элемента в другой изотоп (обычно изотоп другого элемента); при этом происходит испускание электронов, протонов, нейтронов или ядер гелия (а-частиц)» Сущностью открытого явления было в самопроизвольном изменении состава атомного ядра, находящегося в основном состоянии либо в возбужденном долгоживущем состоянии Радиация Радиация существовала всегда. Радиоактивные элементы входили в состав Земли с начала ее существования и продолжают присутствовать до настоящего времени. Однако само явление радиоактивности было открыто всего сто лет назад. В 1896 году французский ученый Анри Беккерель случайно обнаружил, что после продолжительного соприкосновения с куском минерала, содержащего уран, на фотографических пластинках после проявки появились следы излучения. Позже этим явлением заинтересовались Мария Кюри (автор термина “радиоактивность”) и ее муж Пьер Кюри. В 1898 году они обнаружили, что в результате излучения уран превращается в другие элементы, которые молодые ученые назвали полонием и радием. К сожалению люди, профессионально занимающиеся радиацией, подвергали свое здоровье, и даже жизнь опасности из-за частого контакта с радиоактивными веществами. Несмотря на это исследования продолжались, и в результате человечество располагает весьма достоверными сведениями о процессе протекания реакций в радиоактивных массах, в значительной мере обусловленных особенностями строения и свойствами атома. отрицательно заряженные электроны движутся по орбитам вокруг ядра - плотно сцепленных положительно заряженных протонов и электрически нейтральных нейтронов. Химические элементы различают по количеству протонов. Одинаковое количество протонов и электронов обуславливает электрическую нейтральность атома. Количество нейтронов может варьироваться, и в зависимости от этого меняется стабильность изотопов. Большинство нуклидов (ядра всех изотопов химических элементов) нестабильны и постоянно превращаются в другие нуклиды. Цепочка превращений сопровождается излучениями: в упрощенном виде, испускание ядром двух протонов и двух нейтронов ( -частицы) называют - излучением, испускание электрона -  -излучением, причем оба этих процесса происходят с выделением энергию. Иногда дополнительно происходит выброс чистой энергии, называемый  -излучением. 1.1 Основные термины и единицы измерения (терминология НКДАР) Радиоактивный распад - весь процесс самопроизвольного распада нестабильного нуклида. Радионуклид - нестабильный нуклид, способный к самопроизвольному распаду. Период полураспада изотопа - время, за которое распадается в среднем половина всех радионуклидов данного типа в любом радиоактивном источнике. Радиационная активность образца - число распадов в секунду в данном радиоактивном образце; единица измерения - беккерель (Бк). Поглощенная доза единица измерения в системе СИ - грэй (Гр) - энергия ионизирующего излучения, поглощенная облучаемым телом (тканями Эквивалентная доза единица измерения в системе СИ - зиверт (Зв) - поглощенная доза, умноженная на коэффициент, отражающий способность данного вида излучения повреждать ткани организма. Эффективная эквивалентная доза единица измерения в системе СИ - зиверт (Зв) - эквивалентная доза, умноженная на коэффициент, учитывающий разную чувствительность различных тканей к облучению. Коллективная эффективная эквивалентная доза единица измерения в системе СИ - человеко-зиверт (чел-Зв) эффективная эквивалентная доза, полученная группой людей от какого-либо источника радиации. Глава II Влияние радиации на организмы Воздействие радиации на организм может быть различным, но почти всегда оно негативно. В малых дозах радиационное излучение может стать катализатором процессов, приводящих к раку или генетическим нарушениям, а в больших дозах часто приводит к полной или частичной гибели организма вследствие разрушения клеток тканей. Сложность в отслеживании последовательности процессов, вызванных облучением, объясняется тем, что последствия облучения, особенно при небольших дозах, могут проявиться не сразу, и зачастую для развития болезни требуются годы или даже десятилетия. Кроме того, вследствие различной проникающей способности разных видов радиоактивных излучений они оказывают неодинаковое воздействие на организм: -частицы наиболее опасны, однако для -излучения даже лист бумаги является непреодолимой преградой; -излучение способно проходить в ткани организма на глубину один - два сантиметра; наиболее безобидное -излучение характеризуется наибольшей проникающей способностью: его может задержать лишь толстая плита из материалов, имеющих высокий коэффициент поглощения, например, из бетона или свинца. Также различается чувствительность отдельных органов к радиоактивному излучению. Поэтому, чтобы получить наиболее достоверную информацию о степени риска, необходимо учитывать соответствующие коэффициенты чувствительности тканей при расчете эквивалентной дозы облучения: 0,03 - костная ткань 0,03 - щитовидная железа 0,12 - красный костный мозг 0,12 - легкие 0,15 - молочная железа 0,25 - яичники или семенники 0,30 - другие ткани 1,00 - организм в целом. Вероятность повреждения тканей зависит от суммарной дозы и от величины дозировки, так как благодаря репарационным способностям большинство органов имеют возможность восстановиться после серии мелких доз. В таблице 1 приведены крайние значения допустимых доз радиации: Орган Красный костный мозг Допустимая доза 0,5-1 Гр. Хрусталик глаза 0,1-3 Гр. Почки Печень Мочевой пузырь 23 Гр. 40 Гр. 55 Гр. Зрелая хрящевая ткань >70 Гр. Примечаие: Допустимая доза - суммарная доза, получаемая человеком в течение 5 недель Тем не менее, существуют дозы, при которых летальный исход практически неизбежен. Так, например, дозы порядка 100 г приводят к смерти через несколько дней или даже часов вследствие повреждения центральной нервной системы, от кровоизлияния в результате дозы облучения в 10-50 г смерть наступает через одну-две недели, а доза в 35 грамм грозит обернуться летальным исходом примерно половине облученных. Знания конкретной реакции организма на те или иные дозы необходимы для оценки последствий действия больших доз облучения при авариях ядерных установок и устройств или опасности облучения при длительном нахождении в районах повышенного радиационного излучения, как от естественных источников, так и в случае радиоактивного загрязнения. Однако даже малые дозы радиации не безвредны и их влияние на организм и здоровье будущих поколений до конца не изучено. Однако можно предположить, что радиация может вызвать, прежде всего, генные и хромосомные мутации, что в последствии может привести к проявлению рецессивных мутаций. Следует более подробно рассмотреть наиболее распространенные и серьезные повреждения, вызванные облучением, а именно рак и генетические нарушения. В случае рака трудно оценить вероятность заболевания как следствия облучения. Любая, даже самая малая доза, может привести к необратимым последствиям, но это не предопределено. Тем не менее, установлено, что вероятность заболевания возрастает прямо пропорционально дозе облучения. Среди наиболее распространенных раковых заболеваний, вызванных облучением, выделяются лейкозы. Оценка вероятности летального исхода при лейкозе более надежна, чем аналогичные оценки для других видов раковых заболеваний. Это можно объяснить тем, что лейкозы первыми проявляют себя, вызывая смерть в среднем через 10 лет после момента облучения. За лейкозами “по популярности” следуют: рак молочной железы, рак щитовидной железы и рак легких. Менее чувствительны желудок, печень, кишечник и другие органы и ткани. Что касается генетических последствий радиации, то они проявляются в виде хромосомных аберраций (в том числе изменения числа или структуры хромосом) и генных мутаций. Генные мутации проявляются сразу в первом поколении (доминантные мутации) или только при условии, если у обоих родителей мутантным является один и тот же ген (рецессивные мутации), что является маловероятным. Изучение генетических последствий облучения еще более затруднено, чем в случае рака. Неизвестно, каковы генетические повреждения при облучении, проявляться они могут на протяжении многих поколений, невозможно отличить их от тех, что вызваны другими причинами. Существует три пути поступления радиоактивных веществ в организм: при вдыхание воздуха, загрязненного радиоактивными веществами, через зараженную пищу или воду, через кожу, а также при заражении открытых ран. Наиболее опасен первый путь, поскольку: объем легочной вентиляции очень большой значения коэффициента усвоения в легких более высоки. Естественные источники радиации Естественные радионуклиды делятся на четыре группы: долгоживущие (уран-238, уран-235, торий-232); короткоживущие (радий, радон); долгоживущие одиночные, не образующие семейств (калий-40); радионуклиды, возникающие в результате взаимодействия космических частиц с атомными ядрами вещества Земли (углерод-14). Разные виды излучения попадают на поверхность Земли либо из космоса, либо поступают от радиоактивных веществ, находящихся в земной коре, причем земные источники ответственны в среднем за 5/6 годовой эффективной эквивалентной доз, получаемой населением, в основном вследствие внутреннего облучения. Уровни радиационного излучения неодинаковы для различных областей. Так, Северный и Южный полюсы более, чем экваториальная зона, подвержены воздействию космических лучей из-за наличия у Земли магнитного поля, отклоняющего заряженные радиоактивные частицы. Кроме того, чем больше удаление от земной поверхности, тем интенсивнее космическое излучение. Искусственные источники радиационного облучения существенно отличаются от естественных не только происхождением. Во-первых, сильно различаются индивидуальные дозы, полученные разными людьми от искусственных радионуклидов. В большинстве случаев эти дозы невелики, но иногда облучение за счет техногенных источников гораздо более интенсивно, чем за счет естественных. Во-вторых, для техногенных источников упомянутая вариабельность выражена гораздо сильнее, чем для естественных. Наконец, загрязнение от искусственных источников радиационного излучения (кроме радиоактивных осадков в результате ядерных взрывов) легче контролировать, чем природно обусловленное загрязнение. Энергия атома используется человеком в различных целях: в медицине, для производства энергии и обнаружения пожаров, для изготовления светящихся циферблатов часов, для поиска полезных ископаемых и, наконец, для создания атомного оружия. Основной вклад в загрязнение от искусственных источников вносят различные медицинские процедуры и методы лечения, связанные с применением радиоактивности. Основной прибор, без которого не может обойтись ни одна крупная клиника - рентгеновский аппарат, но существует множество других методов диагностики и лечения, связанных с использованием радиоизотопов. Неизвестно точное количество людей, подвергающихся подобным обследованиям и лечению, и дозы, получаемые ими, но можно утверждать, что для многих стран использование явления радиоактивности в медицине остается чуть ли не единственным техногенным источником облучения. В принципе облучение в медицине не столь опасно, если им не злоупотреблять. Но, к сожалению, часто к пациенту применяются неоправданно большие дозы. Среди методов, способствующих снижению риска, уменьшение площади рентгеновского пучка, его фильтрация, убирающая лишнее излучение, правильная экранировка и самое банальное, а именно исправность оборудования и грамотная его эксплуатация. Человек- кузнец своего счастья, и поэтому, если он хочет жить и выживать, то он должен научиться безопасно использовать этого “джина из бутылки” под названием радиация. Человек еще молод для осознания дара, данного природой ему. Если он научится управлять им без вреда для себя и всего окружающего мира, то он достигнет небывалого рассвета цивилизации. А пока нам необходимо прожить первые робкие шаги, в изучении радиации и остаться в живых, сохранив накопленные знания для следующих поколений. Список использованной литературы Лисичкин В.А., Шелепин Л.А., Боев Б.В. Закат цивилизации или движение к ноосфере (экология с разных сторон). М.; “ИЦ-Гарант”, 1997. 352 с. Миллер Т. Жизнь в окружающей среде/Пер. с англ. В 3 т. Т.1. М., 1993; Т.2. М., 1994. Небел Б. Наука об окружающей среде: Как устроен мир. В 2 т./Пер. с англ. Т. 2. М., 1993. Пронин М. Бойтесь! Химия и жизнь. 1992. №4. С.58. Ревелль П., Ревелль Ч. Среда нашего обитания. В 4 кн. Кн. 3. Энергетические проблемы человечества/Пер. с англ. М.; Наука, 1995. 296с. Экологические проблемы: что происходит, кто виноват и что делать?: Учебное пособие/Под ред. проф. В.И. Данилова-Данильяна. М.: Изд-во МНЭПУ, 1997. 332 с. Экология, охрана природы и экологическая безопасность.: Учебное пособие/Под ред. проф. В.И.Данилова-Данильяна. В 2 кн. Кн. 1. М.: Изд-во МНЭПУ, 1997. - 424 с. Т.Х.Маргулова “Атомная энергетика сегодня и завтра” Москва: Высшая школа, 1996