Мутационная изменчивость (хромосомная, геномная, генная изменчивость). Мутационная изменчивость Наблюдается ли у человека мутационная изменчивость

Наследственная изменчивость

Комбинативная изменчивость. Наследственную, или геноти-пическую, изменчивость подразделяют на комбинативную и мутационную.

Комбинативной называют изменчивость, в основе которой лежит образование рекомбинаций, т. е. таких комбинаций генов, которых не было у родителей.

В основе комбинативной изменчивости лежит половое размножение организмов, вследствие которого возникает огромное разнообразие генотипов. Практически неограниченными источниками генетической изменчивости служат три процесса:

    Независимое расхождение гомологичных хромосом в первом мейотическом делении. Именно независимое комбинирование хромосом при мейозе является основой третьего закона Менделя. Появление зеленых гладких и желтых морщинистых семян гороха во втором поколении от скрещивания растений с желтыми гладкими и зелеными морщинистыми семенами - пример комбинативной изменчивости.

    Взаимный обмен участками гомологичных хромосом, или кроссинговер (см. рис. 3.10). Он создает новые группы сцепления, т. е. служит важным источником генетической рекомбинации аллелей. Рекомбинантные хромосомы, оказавшись в зиготе, способствуют появлению признаков, нетипичных для каждого из родителей.

    Случайное сочетание гамет при оплодотворении.

Эти источники комбинативной изменчивости действуют независимо и одновременно, обеспечивая при этом постоянную «перетасовку» генов, что приводит к появлению организмов с другими генотипом и фенотипом (сами гены при этом не изменяются). Однако новые комбинации генов довольно легко распадаются при передаче из поколения в поколение.

Комбинативная изменчивость является важнейшим источником всего колоссального наследственного разнообразия, характерного для живых организмов. Однако перечисленные источники изменчивости не порождают существенных для выживания стабильных изменений в генотипе, которые необходимы, согласно эволюционной теории, для возникновения новых видов. Такие изменения возникают в результате мутаций.

Мутационная изменчивость. Мутационной называется изменчивость самого генотипа. Мутации - это внезапные наследуемые изменения генетического материала, приводящие к изменению тех или иных признаков организма.

Основные положения мутационной теории разработаны Г. Де Фризом в 1901-1903 гг. и сводятся к следующему:

    Мутации возникают внезапно, скачкообразно, как дискретные изменения признаков.

    В отличие от ненаследственных изменений мутации представляют собой качественные изменения, которые передаются из поколения в поколение.

    Мутации проявляются по-разному и могут быть как полезными, так и вредными, как доминантными, так и рецессивными.

    Вероятность обнаружения мутаций зависит от числа исследованных особей.

    Сходные мутации могут возникать повторно.

    Мутации ненаправленны (спонтанны), т. е. мутировать может любой участок хромосомы, вызывая изменения как незначительных, так и жизненно важных признаков.

Почти любое изменение в структуре или количестве хромосом, при котором клетка сохраняет способность к самовоспроизведению, обусловливает наследственное изменение признаков организма. По характеру изменения генома, т. е. совокупности генов, заключенных в гаплоидном наборе хромосом, различают генные, хромосомные и геномные мутации.

Генные, или точковые, мутации - результат изменения нуклеотидной последовательности в молекуле ДНК в пределах одного гена. Такое изменение в гене воспроизводится при транскрипции в структуре иРНК; оно приводит к изменению последовательности аминокислот в полипептидной цепи, образующейся при трансляции на рибосомах. В результате синтезируется другой белок, что ведет к изменению соответствующего признака организма. Это наиболее распространенный вид мутаций и важнейший источник наследственной изменчивости организмов.

Существуют разные типы генных мутаций, связанных с добавлением, выпадением или перестановкой нуклеотидов в гене. Это дупликации (повторение участка гена), вставки (появление в последовательности лишней пары нуклеотидов), делеции ("выпадение одной или более пар нуклеотидов), замены нуклеотид-ных пар (AT -> <- ГЦ; AT -> <- ; ЦГ; или AT -> <- ТА), инверсии (переворот участка гена на 180°).

Эффекты генных мутаций чрезвычайно разнообразны. Большая часть из них фенотипически не проявляется, поскольку они рецессивны. Это очень важно для существования вида, так как в большинстве своем вновь возникающие мутации оказываются вредными. Однако их рецессивный характер позволяет им длительное время сохраняться у особей вида в гетерозиготном состоянии без вреда для организма и проявиться в будущем при переходе в гомозиготное состояние.

Вместе с тем известен ряд случаев, когда изменение лишь одного основания в определенном гене оказывает заметное влияние на фенотип. Одним из примеров служит такая генетическая аномалия, как серповидноклеточная анемия. Рецессивный аллель, вызывающий в гомозиготном состоянии это наследственное заболевание, выражается в замене всего одного аминокислотного остатка в (B -цепи молекулы гемоглобина (глутаминовая кислота -» -> валин). Это приводит к тому, что в крови эритроциты с таким гемоглобином деформируются (из округлых становятся серповидными) и быстро разрушаются. При этом развивается острая анемия и наблюдается снижение количества кислорода, переносимого кровью. Анемия вызывает физическую слабость, нарушения деятельности сердца и почек и может привести к ранней смерти людей, гомозиготных по мутантному аллелю.

Хромосомные мутации (перестройки, или аберрации) - это изменения в структуре хромосом, которые можно выявить и изучить под световым микроскопом.

Известны перестройки разных типов (рис. 3.13):

    нехватка, или дефишенси, - потеря концевых участков хромосомы;

    делеция - выпадение участка хромосомы в средней ее части;

    дупликация - двух- или многократное повторение генов, локализованных в определенном участке хромосомы;

    инверсия - поворот участка хромосомы на 180°, в результате чего в этом участке гены расположены в последовательности, обратной по сравнению с обычной;

    транслокация - изменение положения какого-либо участка хромосомы в хромосомном наборе. К наиболее распространенному типу транслокаций относятся реципрокные, при которых происходит обмен участками между двумя негомологичными хромосомами. Участок хромосомы может изменить свое положение и без реципрокного обмена, оставаясь в той же хромосоме или включаясь в какую-то другую.

При дефишенси, делециях и дупликациях изменяется количество генетического материала. Степень фенотипического изменения зависит от того, насколько велики соответствующие участки хромосом и содержат ли они важные гены. Примеры дефишенси известны у многих организмов, включая человека. Тяжелое наследственное заболевание -синдром «кошачьего крика» (назван так по характеру звуков, издаваемых больными младенцами), обусловлен гетерозиготностью по дефишенси в 5-й хромосоме. Этот синдром сопровождается сильным нарушением роста и умственной отсталостью. Обычно дети с таким синдромом рано умирают, но некоторые доживают до зрелого возраста.

3.13 . Хромосомные перестройки, изменяющие расположение генов в хромосомах.

Геномные мутации - изменение числа хромосом в геноме клеток организма. Это явление происходит в двух направлениях: в сторону увеличения числа целых гаплоидных наборов (полиплоидия) и в сторону потери или включения отдельных хромосом (анеуплоидия).

Полиплоидия - кратное увеличение гаплоидного набора хромосом. Клетки с разным числом гаплоидных наборов хромосом называются триплоидными (Зn), тетраплоидными (4n), гексанло-идными (6n), октаплоидными (8n) и т. д.

Чаще всего полиплоиды образуются при нарушении порядка расхождения хромосом к полюсам клетки при мейозе или митозе. Это может быть вызвано действием физических и химических факторов. Химические вещества типа колхицина подавляют образование митотического веретена в клетках, приступивших к делению, в результате чего удвоенные хромосомы не расходятся и клетка оказывается тетрагшоидной.

Для многих растений известны так называемые полиплоидные ряды. Они включают формы от 2 до 10n и более. Например, полиплоидный ряд из наборов в 12, 24, 36, 48, 60, 72, 96, 108 и 144 хромосомы составляют представители рода паслен (Solanum). Род пшеница (Triticum) представляет ряд, члены которого имеют 34, 28 и 42 хромосомы.

Полиплоидия приводит к изменению признаков организма и поэтому является важным источником изменчивости в эволюции и селекции, особенно у растений. Это связано с тем, что у растительных организмов весьма широко распространены гермафродитизм (самоопыление), апомиксис (партеногенез) и вегетативное размножение. Поэтому около трети видов растений, распространенных на нашей планете, - полиплоиды, а в резко континентальных условиях высокогорного Памира произрастает до 85% полиплоидов. Почти все культурные растения тоже полиплоиды, у которых, в отличие от их диких сородичей, более крупные цветки, плоды и семена, а в запасающих органах (стебель, клубни) накапливается больше питательных веществ. Полиплоиды легче приспосабливаются к неблагоприятным условиям жизни, легче переносят низкие температуры и засуху. Именно поэтому они широко распространены в северных и высокогорных районах.

В основе резкого увеличения продуктивности полиплоидных форм культурных растений лежит явление полимерии (см. § 3.3).

Анеуплоидия, или гетероплодия, - явление, при котором клетки организма содержат измененное число хромосом, не кратное гаплоидному набору. Анеуплоиды возникают тогда, когда не расходятся или теряются отдельные гомологичные хромосомы в митозе и мейозе. В результате нерасхождения хромосом при гамето-генезе могут возникать половые клетки с лишними хромосомами, и тогда при последующем слиянии с нормальными гаплоидными гаметами они образуют зиготу 2n + 1 (трисомик) по определенной хромосоме. Если в гамете оказалось меньше на одну хромосому, то последующее оплодотворение приводит к образованию зиготы 1n - 1 (моносомик) по какой-либо из хромосом. Кроме того, встречаются формы 2n - 2, или нуллисомики, так как отсутствует пара гомологичных хромосом, и 2n + х, или полисомики.

Анеуплоиды встречаются как у растений и животных, так и у человека. Анеуплоидные растения обладают низкой жизнеспособностью и плодовитостью, а у человека это явление нередко приводит к бесплодию и в этих случаях не наследуется. У детей, родившихся от матерей старше 38 лет, вероятность анеуплоидии повышена (до 2,5%). Кроме того, случаи анеуплоидии у человека вызывают хромосомные болезни.

У раздельнополых животных как в естественных, так и в искусственных условиях полиплоидия встречается крайне редко. Это обусловлено тем, что полиплоидия, вызывая изменение соотношения половых хромосом и аутосом, приводит к нарушению конъюгации гомологичных хромосом и тем самым затрудняет определение пола. В результате такие формы оказываются бесплодными и маложизнеспособными.

Спонтанные и индуцированные мутации. Спонтанными называют мутации, возникающие под влиянием неизвестных природных факторов, чаще всего как результат ошибок при воспроизведении генетического материала (ДНК или РНК). Частота спонтанного мутирования у каждого вида генетически обусловлена и поддерживается на определенном уровне.

Индуцированный мутагенез - это искусственное получение мутаций с помощью физических и химических мутагенов. Резкое увеличение частоты мутаций (в сотни раз) происходит под воздействием всех видов ионизирующих излучений (гамма- и рентгеновские лучи, протоны, нейтроны и др.), ультрафиолетового излучения, высоких и низких температур. К химическим мутагенам относятся такие вещества, как формалин, азотистый иприт, колхицин, кофеин, некоторые компоненты табака, лекарственных препаратов, пищевых консервантов и пестицидов. Биологическими мутагенами являются вирусы и токсины ряда плесневых грибов.

В настоящее время ведутся работы по созданию методов направленного воздействия различных мутагенов на конкретные гены. Такие исследования очень важны, поскольку искусственное получение мутаций нужных генов может иметь большое практическое значение для селекции растений, животных и микроорганизмов.

Закон гомологических рядов в наследственной изменчивости. Крупнейшим обобщением работ по изучению изменчивости в начале XX в. стал закон гомологических рядов в наследственной изменчивости. Он был сформулирован выдающимся русским ученым Н. И. Вавиловым в 1920 г. Сущность закона заключается в следующем: виды и роды, генетически близкие, связанные друг с другом единством происхождения, характеризуются сходными рядами наследственной изменчивости. Зная, какие формы изменчивости встречаются у одного вида, можно предвидеть нахождение аналогичных форм у родственного ему вида.

В основе закона гомологических рядов фенотипической изменчивости у родственных видов лежит представление о единстве их происхождения от одного предка в процессе естественного отбора. Поскольку общие предки имели специфический набор генов, то их потомки должны обладать примерно таким же набором.

Более того, у родственных видов, имеющих общее происхождение, возникают и сходные мутации. Это означает, что у представителей разных семейств и классов растений и животных со сходным набором генов можно встретить параллелизм - гомологические ряды мутаций по морфологическим, физиологическим и биохимическим признакам и свойствам. Так, у разных классов позвоночных встречаются сходные мутации: альбинизм и отсутствие перьев у птиц, альбинизм и бесшерстность у млекопитающих, гемофилия у многих млекопитающих и человека. У растений наследственная изменчивость отмечена по таким признакам, как пленчатое или голое зерно, остистый или безостый колос и др.

Закон гомологических рядов, отражая общую закономерность мутационного процесса и формообразования организмов, представляет широкие возможности для его практического использования в сельскохозяйственном производстве, селекции, медицине. Знание характера изменчивости нескольких родственныхх видов дает возможность поиска признака, который отсутствует у одного из них, но характерен для других. Таким путем были собраны и изучены голозерные формы злаков, односемянные сорта сахарной свеклы, не нуждающиеся в прорывке, что особенно важно при механизированной обработке почв. Медицинская наука в качестве моделей для изучения болезней человека получила возможность использовать животных с гомологическими заболеваниями: это сахарный диабет крыс; врожденная глухота мышей, собак, морских свинок; катаракта глаз мышей, крыс, собак и др.

Закон гомологических рядов позволяет также предвидеть возможность появления мутаций, еще неизвестных науке, которые могут использоваться в селекции для создания новых ценных для хозяйства форм.

Типы мутаций

Вполне вероятно, что у плодовых мушек, которых облучал Мюллер, появлялось гораздо больше мутаций, чем он смог обнаружить. По определению, мутация - это любое изменение в ДНК. Это значит, что мутации могут происходить в геноме где угодно. А поскольку большую часть генома занимает «мусорная» ДНК, ничего не кодирующая, большинство мутаций остаются незамеченными.

Мутации изменяют физические свойства организма (признаки), только если они изменяют последовательность ДНК внутри гена (рис. 7.1).

Рис. 7.1. Эти три аминокислотные последовательности показывают, как маленькие изменения могут приводить к большому эффекту. Начало одной из аминокислотных цепей в нормальном белке приведено в верхнем ряду. Ниже аминокислотная цепь ненормального варианта белка гемоглобина: валин замешен на глютаминовую кислоту в шестом положении. Эта единственная замена, приводящая к мутации кодона ГАА в кодон ГУА, является причиной серповидно-клеточной анемии, выражающейся в ряде симптомов: от слабой анемии (если у индивидуума остается нормальная копия мутировавшего гена) до смерти (если у индивидуума две мутировавшие копии гена)

Хотя Мюллер индуцировал мутации у плодовых мушек, подвергая их высоким дозам облучения, мутации случаются в организме все время. Иногда это просто ошибки нормальных процессов, происходящих в клетке, а иногда - результат воздействия окружающей среды. Такие спонтанные мутации встречаются с частотами, характерными для определенного организма, иногда называемыми спонтанным фоном.

Наиболее часто случаются точковые мутации, которые изменяют всего одну пару оснований в нормальной последовательности ДНК. Их можно получить двумя путями:

1. ДНК химически модифицируется, так что одно из оснований меняется на другое. 2. Репликация ДНК работает с ошибками, вставляя ошибочное основание в цепь при синтезе ДНК.

Какова бы ни была причина их появления, точковые мутации можно разделить на два типа:

1. Транзиции . Наиболее часто встречающийся тип мутаций. При транзиции один пиримидин замещается другим пиримидином или один пурин замещается другим пурином: например, пара Г-Ц становится парой А-Т, или наоборот.

2. Трансверзии . Более редкий тип мутаций. Пурин замещается пиримидином или наоборот: например, пара А-Т становится парой Т-А или Ц-Г.

Азотистая кислота - это мутаген, который вызывает транзиции. Она конвертирует цитозин в урацил. Цитозин обычно дает пару с гуанином, но урацил - с аденином. В результате пара Ц-Г становится парой Т-А, когда А спаривается с Т в следующей репликации. Азотистая кислота оказывает такой же эффект на аденин, превращая пару А-Т в пару Ц-Г.

Другой причиной транзиций является ошибочное спаривание оснований. Это происходит, когда по какой-то причине неправильное основание встраивается в нить ДНК, затем оно образует пару с неправильным партнером (некомплементарным основанием) вместо того, с которым должно эту пару образовать. В результате во время следующего цикла репликации пара полностью меняется.

Эффект точковых мутаций зависит от того, в каком месте последовательности оснований они образуются. Поскольку изменение одной пары оснований меняет только один кодон и, следовательно, одну аминокислоту, получающийся в результате белок может быть поврежден, но может, несмотря на повреждение, сохранить часть нормальной активности.

Гораздо сильнее, чем точковые мутации, повреждают ДНК мутации сдвига рамки . Вспомните, что генетическая последовательность оснований (секвенс) считывается как последовательность неперекрывающихся триплетов (трех оснований). Это значит, что существует три пути прочтения (рамки считывания) последовательности оснований, зависящих от точки начала прочтения. Если мутация убирает или встраивает лишнее основание, она вызывает сдвиг рамки, и вся последовательность оснований прочитывается неправильно. Это значит, что изменится вся последовательность аминокислот, а получающийся белок, с большой долей вероятности, будет полностью неработающим.

Мутации сдвига рамки вызываются акридинами , химическими веществами, которые связываются с ДНК и настолько изменяют ее структуру, что основания могут быть добавлены или убраны из ДНК во время ее репликации. Эффект таких мутаций зависит от места последовательности оснований, в котором произойдет вставка (инсерция ) или выпадение (делеция ) оснований, а также от их взаимного расположения в образующейся последовательности (рис. 7.2).

Рис. 7.2. Один из способов, которым мутация сдвига рамки может влиять на считывание последовательности оснований ДНК

Еще одним типом мутаций является встраивание (инсерция) длинных фрагментов дополнительного генетического материала в геном. Встраиваются транспозирующиеся (мобильные генетические) элементы , или транспозоны , - последовательности, которые могут перемещаться из одного места ДНК в другое. Впервые транспозоны были открыты генетиком Барбарой МакКлинток (Barbara McClintock) в 1950-е годы. Это короткие элементы ДНК, которые из одной точки генома могут перепрыгнуть в другую (поэтому их часто называют «прыгающими генами»). Иногда они прихватывают с собой расположенные рядом последовательности ДНК. Обычно транспозоны состоят из одного или нескольких генов, один из которых представляет собой ген фермента транспозазы . Этот фермент требуется транспозонам для перемещения из одного места ДНК в другое внутри клетки.

Существуют также ретротранспозоны , или ретропозоны , которые сами передвигаться не могут. Вместо этого они используют свою мРНК. Она сначала копируется в ДНК, а последняя вставляется в другую точку генома. Ретротранспозоны родственны ретровирусам.

Если транспозон встраивается в ген, кодирующая последовательность оснований нарушается, и ген в большинстве случаев выключается. Транспозоны также могут нести сигналы для окончания транскрипции или трансляции, которые эффективно блокируют выражение других генов, расположенных вслед за ними. Такой эффект называется полярной мутацией .

Ретротранспозоны типичны для геномов млекопитающих. Фактически, около 40% генома состоит из таких последовательностей. Это одна из причин, по которой геном содержит так много «мусорной» ДНК. Ретротранспозоны могут быть SINE (короткими промежуточными элементами) длиной в несколько сот пар оснований пли LINE (длинными промежуточными элементами) длиной от 3000 до 8000 пар оснований. Например, человеческий геном содержит около 300 тыс. последовательностей одного типа SINE, у которых, кажется, нет другой функции, кроме саморепликации. Данные элементы также называются «эгоистической» ДНК.

В отличие от точковых мутаций мутации, вызываемые транспозонами, не могут индуцироваться мутагенами.

Точковые мутации могут ревертировать, возвращаться к исходной последовательности как за счет восстановления оригинальной последовательности ДНК, так и за счет мутаций в других местах гена, которые компенсируют действие первичной мутации.

Вставка дополнительного элемента ДНК, очевидно, может ревертировать за счет вырезания вставленного материала - точечного исключения . Делеция части гена, однако, ревертировать не может.

Мутации могут происходить в других генах, приводя к формированию обходного пути, исправляющего повреждение, вызванное начальной мутацией. В результате образуется двойной мутант, имеющий нормальный или почти нормальный фенотип. Этот феномен называется супрессией , бывающей двух типов: внегенной и внутригенной .

Внегенная супрессорная мутация подавляет действие мутации, расположенной в другом гене, иногда за счет изменения физиологических условий, при которых белок, кодируемый супрессируемым мутантом, может функционировать вновь. Бывает, что такая мутация меняет аминокислотную последовательность мутантного белка.

Внутригенная супрессорная мутация подавляет эффект мутации в гене, где она расположена, иногда восстанавливая рамку считывания, нарушенную мутацией сдвига рамки. В некоторых случаях мутация изменяет аминокислоты в сайте, который компенсирует изменение аминокислоты, вызванное первичной мутацией. Феномен также называется реверсией во втором сайте .

Не все последовательности оснований в гене подвержены мутациям в одинаковой мере. Мутации имеют тенденцию группироваться вокруг горячих точек в последовательности гена - местах, где вероятность образования мутаций в 10 или 100 раз выше, чем ожидаемая при случайном распределении. Расположение этих горячих точек различно для разных типов мутаций и мутагенов, индуцирующих их.

В бактерии E . coli , например, горячие точки встречаются там, где расположены модифицированные основания, называемые 5-метил-цитозином. Это основание иногда подвергается таутомерному сдвигу - перестройке атома водорода. В результате Г спаривается с Т вместо Ц, а после репликации образуется пара дикого типа Г-Ц и мутантная пара А-Т (в генетике диким типом называются последовательности ДНК, которые обычно встречаются в природе).

Многие мутации не дают видимого эффекта. Они называются молчащими мутациями . Иногда мутация молчит, потому что изменения не влияют на продукцию аминокислот, а иногда - поскольку, несмотря на замену аминокислоты в белке, новая аминокислота не влияет на его функцию. Это называется нейтральной заменой .

Мутация, выключающая или изменяющая функцию гена, называется прямой мутацией . Мутация, которая реактивирует или восстанавливает функцию гена за счет реверсии начальной мутации или за счет открытия обходного пути (как при реверсии во втором сайте, описанной выше), называется обратной мутацией .

Как видите, есть много различных способов классифицировать мутации, и одна и та же мутация может относиться к различным типам. Данные табл. 7.1 могут внести ясность в характеристику мутаций.

Классификация мутаций

Классификация мутаций (продолжение)

Термин "мутация" восходит к латинскому слову "mutatio", что в буквальном переводе означает - изменения или перемена. Мутационная изменчивость обозначает устойчивые и явные изменения генетического материала, что выводится в Именно это является первым звеном в цепочке формирования наследственных болезней и патогенеза. Данное явление стало активно изучаться только во второй половине 20-го века, а в настоящее время всё чаще можно слышать, что мутационная изменчивость должна изучаться, так как знание и понимание данного механизма становится ключевым для преодоления проблем человечества.

Существует несколько видов мутаций в клетках. Их классификация зависит от разновидности самих клеток. Генеративные мутации происходят в половых клетках, также существуют гаметические клетки. Любые изменения наследуются и зачастую обнаруживаются в клетках потомков, от поколения к поколению передаётся ряд отклонений, которые в итоге становятся причиной заболеваний.

Относятся к неполовым клеткам. Их особенность в том, что они проявляются только у того индивида, у которого появились. Т.е. изменения не передаются по наследству другим клеткам, а только при делении в одном организме. Соматическая мутационная изменчивость проявляется заметней тогда, когда она начинается на ранних стадиях. Если мутация случается на первых стадиях дробления зиготы, то возникнет больше клеточных линий с отличными друг от друга генотипами. Соответственно, уже больше клеток будет нести мутацию, такие организмы называются мозаичными.

Уровни наследственных структур

Мутационная изменчивость проявляется в наследственных структурах, отличающихся разным уровнем организации. Мутации могут происходить на генном, хромосомном и геномном уровнях. В зависимости от этого изменяются и виды мутационной изменчивости.

Генные изменения затрагивают структуру ДНК, в результате чего она меняется на молекулярном уровне. Такие изменения в некоторых случаях никак не влияют на жизнеспособность белка, т.е. функции никак не меняются. Но в других случаях могут происходить дефектные образования, что уже прекращает способность белка выполнять свою функцию.

Мутации на хромосомном уровне уже несут более серьёзную угрозу, потому что они влияют на формирование хромосомных болезней. Результатом такой изменчивости являются изменения в структуре хромосом, а здесь уже задействовано сразу несколько генов. Из-за этого может изменяться обычный диплоидный набор, что в свою очередь может в целом повлиять и на ДНК.

Геномные мутации также как и хромосомные могут стать причиной формирования Примеры мутационной изменчивости на этом уровне - анеуплоидия и полиплоидия. Это увеличение или уменьшение числа хромосом, которые для человека чаще всего оказываются летальными.

К геномным мутациям относится трисомия, означающая наличие трёх гомологических хромосомы в кариотипе (увеличение количества). Такой отклонение приводит к формированию синдрома Эдвардса и синдрома Дауна. Моносомия означает наличие только одной из двух гомологических хромосом (уменьшение количества), что практически исключает нормальное развитие эмбриона.

Причиной возникновения подобных явлений становятся нарушения на разных стадиях развития половых клеток. Происходит это в результате анафазного отставания - гомологические хромосомы при движутся к полюсам, и одна из них может отставать. Также существует понятие "нерасхождение", когда хромосомы не смогли разделиться на стадии митоза или мейоза. Результатом этого становится проявление нарушений разной степени тяжести. Изучение данного явления поможет разгадать механизмы и, вероятно, даст возможность предсказывать и влиять на эти процессы.

Мутационная изменчивость — это изменчивость , происходящая в результате воздействия на организм мутагенов, вследствие которых имеют место мутации.

Большинство мутаций являются вредными и устраняются в процессе естественного отбора . Отдельные мутации в данных конкретных условиях могут быть полезными для организма. В таких случаях они передаются последующим поколениям, и в результате размножения организмов постепенно растёт их число. Любой отдельно взятый организм, даже обладающий полезной мутацией, никогда не может эволюционировать самостоятельно.

Мутационная изменчивость, наряду с комбинативной, является элементарным материалом эволюции .

Различают следующие разновидности мутационной изменчивости: генная , хромосомная , геномная и цитоплазматическая .

Генные мутации

Увеличение или уменьшение числа нуклеотидов, содержащихся в генах, или их перемещение вызывают изменчивость. Мутации происходят внезапно и случаются редко. Вероятность повторения генных мутаций равняется 10 -6 — 10 -8 . Материал с сайта

Хромосомные мутации

Хромосомные мутации связаны с уменьшением или увеличением отдельных частей хромосом, их перемещением. Если принять во внимание то, что в каждой хромосоме содержится несколько сотен генов, то можно ожидать, что хромосомные мутации приведут к значительным изменениям.

Геномные мутации

Геномные мутации по сравнению с генными и хромосомными происходят очень редко.

Наследственные изменения генетического материала называют мутациями. По характеру проявления они могут быть доминантными и рецессивными. Это обстоятельство очень важно для существования вида и его популяций.

Мутации оказываются, как правило, вредными, поскольку вносят нарушения в тонко сбалансированную систему биохимических превращений, перестраивают генетический аппарат. Обладатели вредных доминантных мутаций, сразу же проявляющихся в гомо- и гетерозиготном организме, часто оказываются нежизнеспособными и погибают на самых ранних этапах онтогенеза. В результате мутаций появляются и наследуются аномалии в строении тела, наследственные болезни человека.

Мутации, резко снижающие жизнеспособность, частично или полностью останавливающие развитие, называют соответственно полулетальными и летальными. У человека к таким мутациям относят рецессивный ген гемофилии.

По характеру изменений генетического аппарата различают мутации: геномные, обусловленные сменой числа полного набора хромосом.

  • Хромосомные мутации связаны с изменением структуры хромосом или их числа.
  • Полиплоидия - увеличение числа хромосом, кратные гаплоидному набору. Различают среди растений триплоиды (Зп), тетраплоиды (4п) и т. д. В растениеводстве известно более 500 полиплоидов (сахарная свекла, гречиха, мята и т. д.). Все они выделяются большой вегетативной массой н имеют большую ценность.
  • Гетероплоидия - изменение числа хромосом ие кратное гаплоидному набору. Это мутации, связанные с избытком или недостатком одной хромосомы из пары гомологичных хромосом. Такие мутации возникают при нарушении мейоза, когда после конъюгации пара хромосом не расходится и в одну гамету попадают обе гомологичные хромосомы, а в другую ни одной.
  • Гетероплоидия вредна для организма. Например, у человека появление лишней хромосомы в 21 паре вызывает синдром Дауна (слабоумие).
  • Генные мутации - затрагивают структуру самого гена и влекут за собой изменения свойств организма (гемофилия, дальтонизм, альбинизм и др.).
  • Точковые, или генные мутации, обусловлены заменой одного или нескольких нуклеотидов в пределах одного гена. Они влекут за собой изменение строения белков, заключающееся в появлении новой последовательности аминокислот в полипептидной цепи.

Мутации возникают как в соматических, так и в генеративных клетках. Биологическое значение их для человека неоднозначно. Соматические мутации по наследству не передаются и в процессе эволюции особого значения не имеют. Однако в индивидуальном развитии они могут воздействовать на формирование признаков. Если мутация происходит в генеративных клетках, из которых развиваются гаметы, то новые признаки появляются в ближайшем или последующем поколениях.

События нашего века показали, какие потенциальные опасности таит в себе облучение живых организмов, в том числе и человека. С биологической точки зрения самым опасным является ионизирующее излучение, к которому относятся рентгеновские лучи и радиоактивное излучение. В больших дозах ионизирующее излучение разрушает и губит клетки. Меньшие дозы приводят к другим дефектам: разрывам в молекулах ДНК, при котором клеточное деление становится невозможным. Менее выраженные повреждения проявляются в форме мутаций, которые при делении клеток передаются потомкам. Такого рода мутации соматических клеток вызывают рак и другие заболевания.

Характер мутаций не зависит от внешней среды, однако такие факторы, как ионизирующее излучение и некоторые химические вещества, увеличивают частоту мутаций. Воздействие на человека высоких доз коротковолновых излучений вызывает развитие лучевой болезни.

Генетический эффект облучения редко проявляется сразу, однако не следует недооценивать грозящей будущим поколениям опасности накопления вредных генов в популяции.

При выведении новых сортов растений и штаммов микроорганизмов используют индуцированные мутации (искусственно вызываемые различными мутагенными факторами: химическими веществами, рентгеновскими или ультрафиолетовыми лучами). Затем проводят отбор полученных мутантов, сохраняя наиболее продуктивные.

Н. И. Вавилов, изучая мутации у родственных видов, установил закон гомологических рядов в наследственной изменчивости. .у.

Генетически близкие виды н роды характеризуются сходными рядами наследственной изменчивости с такой правильностью, что, зная ряд форм в пределах одного вида, можно предвидеть нахождение параллельных форм у других видов н родов.

Руководствуясь законом, можно предсказать, какие мутационные формы должны возникнуть у близкородственных видов домашних животных, новых сортов культурных растений, а также новые ожидаемые формы (виды, роды) в систематике.

Приложение законов наследственности и изменчивости к теории селекции привело к лучшему пониманию и значительному усовершенствованию ряда важных методов селекции, разработке новых методов, дало возможность составлять различные селекционные программы.

Селекция (от лат. «селиктио» - отбор) - наука о выведении новых и совершенствовании существующих сортов культурных растений, пород домашних животных и штаммов микроорганизмов, соответствующих потребностям человека и уровню производительных сил общества.

Сорт, порода и штамм — это популяции, искусственно созданные человеком, имеющие определенные наследственные особенности: комплекс морфологических и физиологических признаков, продуктивность и норму реакции.

Создателем современной генетической основы селекции является Н. И. Вавилов. По его мнению, селекция это эволюция, направляемая человеком.

Основные методы селекции: гибридизация и отбор.

Этапы селекционной работы

I этап селекционной работы

Исходное сортовое и видовое разнообразие растений и животных - объекты селекционной работы (без знания исходного материала, без изучения его происхождения и эволюции невозможно совершенствование существующих форм животных и растений).

На данном этапе используются работы Н. И. Вавилова по установлению центров происхождения культурных растений в очагах древнейшего земледелия, созданию их коллекции и использованию в качестве исходного материала. Таких центров восемь.

  1. Южноазиатский тропический центр. Тропическая Индия, Индокитай, Южный Китай, острова Юго-Восточной Азии. Исключительно богат культурными растениями (около ½ известных видов культурных растений). Родина риса, сахарного тростника, множества плодовых и овощных культур.
  2. Восточноазиатский центр. Центральными Восточный Китай, Япония, остров Тайвань, Корея. Родина сои, нескольких видов проса, множества плодовых и овощных культур. Этот центр тоже богат видами культурных растений - около 20% мирового многообразия.
  3. Юго-Западноазиатский центр. Малая Азия, Средняя Азия, Иран, Афганистан, Северо-Западная Индия. Родина нескольких форм пшеницы, ржи, многих зерновых, бобовых, винограда, плодовых. В нем возникло 14% мировой культурной флоры.
  4. Средиземноморский центр. Страны, расположенные но берегам Средиземного моря. Этот центр, где располагались величайшие древние цивилизации, дал около 11% видов культурных растений. В их числе маслины, многие кормовые растения (клевер, одноцветковая чечевица), многие овощные (капуста) и кормовые культуры.
  5. Абиссинский центр. Небольшой район Африканского материка с очень своеобразной флорой культурных растений. Очевидно, очень древний очаг самобытной земледельческой культуры. Родина зернового сорго, одного вида бананов, масличного растения нута, ряда особых форм пшеницы и ячменя.
  6. Центральноамериканский центр. Южная Мексика. Родина кукурузы, длинноволокнистого хлопчатника, какао, ряда тыквенных, фасоли - всего около 90 видов культурных растений.
  7. Андийский (Южноамериканский) центр. Включает часть районов Андийского горного хребта вдоль западного побережья Южной Америки. Родина многих клубненосных растений, в том числе картофеля, некоторых лекарственных растений (кокаиновый куст, хинное дерево и др.)

Подавляющее большинство культурных растений связано в своем происхождении с одним или несколькими из перечисленных выше географических центров.

II этап - скрещивание (гибридизация)

Бывает двух видов:

  1. Близкородственное - инбридинг (позволяющее перевести рецессивные гены в гомозиготное состояние);
  2. Неродственное (помогающее объединить в одном организме ценные признаки разных форм).

III этап - отбор - завершающий этап селекции.

Известно две формы отбора:

  • массовый (выделение группы особей, сходных по фенотипу, но дающих расщепление при размножении)
  • индивидуальный (выделение единичных ценных форм и раздельное выращивание Потомства каждой особи) приводит к созданию сорта или породы чистой линии.

В селекции растений широко используется инбридинг, полиплоидия, искусственный мутагенез, отдаленная гибридизация.

В области селекции растений много сделали известные селекционеры-генетики: И. В. Мичурин и Г. Д. Карнеченко, II. В. Цицин, П. II. Лукьяненко, В. Н. Ремесло, В. С. Пустовойт и л р.

Ими были выведены высокоурожайные сорта сахарной свеклы, гречихи, хлопчатника; высокопродуктивные кубанские сорта пшеницы, украинские сорта «Мироновская-808, «Юбилейная-50», «Харьковская-63» и др.

Селекция животных отличается от таковой у растении: животные дают мало потомков, у них позднее наступает половозрелость, они не размножаются вегетативно, отсутствует самооплодотворение.

В селекции животных используют гибридизацию и отбор (массовый и индивидуальный), инбридинг и другие методы (М. Ф. Иванов, Н. С, Батурин и др.)

Селекция микроорганизмов - молодая, развивающаяся отрасль селекции. Ее задача - получение высокопродуктивных микроорганизмов путем воздействия на исходные формы лучами Рентгена, ультрафиолетовыми лучами и химическими мутагенами.

Чередование обработки мутагенами с отбором позволяет выделять штаммы, по продуктивности в десятки раз превосходящие исходный.

Генетика

Генетика популяций - наука о генетической структуре природных популяций и генетических процессах, происходящих в ней, таких, как дрейф генов, миграция, мутация и отбор.

Все организмы состоят из больших популяций, в которых по законам генетики поддерживается равновесие генетического материала. Однако это равновесие постоянно нарушается мутационными процессами, миграциями, дрейфом генов и другими факторами.

Все разнообразие в человеческих популяциях - есть результат мутационных изменений. Видный генетик С. С. Четвериков (1882-1959) внес существенный вклад в доказательство связи генетики с эволюцией. Он показал, что первые элементарные процессы начинаются в популяциях. Природные популяции при относительной фенотипичной однородности по генетической структуре разнородны и насыщены множеством открытых мутаций, образующих резерв {генетический груз) наследственной изменчивости.

Под генетической структурой понимают соотношение в ней разных генотипов и аллельных генов. Английский математик Харди и немецкий врач Вайнберг установили, что при идеальных условиях - крупной популяции отсутствии мутаций, миграций и отбора - соотношение генотипов и аллельных генов во всех поколениях постоянно.

Резерв наследственной изменчивости в популяции образуется за счет мутации. Доминантные мутации возникают редко, проявляются сразу и подвергаются отбору,

Рецессивные мутации у гетерозиготных организмов фенотипически не проявляются, но при скрещивании насыщают генофонд популяции и образуют новые генотипы.

Генофонд популяций пополняется также за счет генного потока - миграции особей из других популяций, приносящих новые гены. Они, также, как мутации, при скрещиваниях первое время у гетерозиготных организмов не проявляются. Одним из путей относительно быстрого изменения частот генов является случайное распределение генов, называемое дрейфом генов.

Дрейф генов, случайная, нецеленаправленная смена частоты встречаемости аллелей в популяции, обуславливаемая периодическими популяционными волнами. Чаще всего дрейф генов встречается в малочисленных популяциях. В результате дрейфа генов в популяции может возрастать частота встречаемости редких аллелей, некоторые аллели могут исчезать; длительный период могут сохраняться мутантные аллели, что снижает приспособленность особей к условиям жизни.

Резерв наследственной информации образуется еще и за счет комбинативной изменчивости, при которой в одном генотипе объединяются и обезвреживаются разнонаправленные мутации.

Накапливаясь в популяции, скрытые мутации частично переходят в гомозиготное состояние и тогда проявляются фенотипически. В постоянных условиях стабилизирующий отбор (отбор в пользу нормы признака) устраняет их как несоответствующие условиям среды.

В меняющихся условиях, при действии движущего отбора (отбора некоторых отклонений от установившейся нормы признаков), резерв наследственной изменчивости позволяет популяции приспосабливаться к новым условиям среды. Чем больше генотипов в популяции, тем шире ее норма реакции, тем вероятнее ее выживание в меняющихся условиях и возможность полнее использовать новые места обитания.

Каждый биологический вид обладает уникальным генофондом, поэтому одной из важнейших задач человечества является охрана генофонда естественных популяций организмов.

Наследственные изменения генетического материала теперь называют мутациями. Мутации - внезапные изменения генетического материала, приводящие к изменению тех или иных признаков организмов.

Термин "мутация" впервые ввел в науку голландский генетик Г. де-Фриз. Проводя опыты с энотерой (декоративное растение), он случайно обнаружил экземпляры, отличающиеся рядом признаков от остальных (большой рост, гладкие, узкие и длинные листья, красные жилки листьев и широкая красная полоса на чашечке цветка и т.д.). Причем при семенном размножении растения из поколения в поколение стойко сохраняли эти признаки. В результате обобщения своих наблюдений де-Фриз создал мутационную теорию, основные положения которой не утратили своего значения и по сей день:

© мутации возникают внезапно, скачкообразно, без всяких переходов;

© мутации наследственны, т.е. стойко передаются из поколения в поколение;

© мутации не образуют непрерывных рядов, не группируются вокруг среднего типа (как при модификационной изменчивости), они являются качественными изменениями;

© мутации ненаправленны - мутировать может любой локус, вызывая изменения как незначительных, так и жизненно важных признаков в любом направлении;

© одни и те же мутации могут возникать повторно;

© мутации индивидуальны, то есть возникают у отдельных особей.

Процесс возникновения мутаций называют мутагенез , организмы, у которых произошли мутации, - мутантами , а факторы среды, вызывающие появление мутаций, - мутагенными .

Способность к мутированию - одно из свойств гена. Каждая отдельная мутация вызывается какой-то причиной, как правило, связанной с изменениями во внешней среде.

Классификация мутаций

Существует несколько классификаций мутаций:

© Мутации по месту их возникновения:

¨ Генеративные - возникшие в половых клетках. Они не влияют на признаки данного организма, а проявляются только в следующем поколении.

¨ Соматические - возникающие в соматических клетках. Эти мутации проявляются у данного организма и не передаются потомству при половом размножении (черное пятно на фоне коричневой окраски шерсти у каракулевых овец). Сохранить соматические мутации можно только путем бесполого размножения (прежде всего вегетативного).



© Мутации по адаптивному значению:

¨ Полезные - повышающие жизнеспособность особей.

¨ Вредные :

§ летальные - вызывающие гибель особей;

§ полулетальные - снижающие жизнеспособность особи (у мужчин рецессивный ген гемофилии носит полулетальный характер, а гомозиготные женщины оказываются нежизнеспособными).

¨ Нейтральные - не влияющие на жизнеспособность особей.

Эта классификация весьма условна, так как одна и та же мутация в одних условиях может быть полезной, а в других - вредной.

© Мутации по характеру проявления:

¨ доминантные , которые могут делать обладателей этих мутаций нежизнеспособными и вызывать их гибель на ранних этапах онтогенеза (если мутации являются вредными);

¨ рецессивные - мутации, не проявляющиеся у гетерозигот, поэтому длительное время сохраняющиеся в популяции и образующие резерв наследственной изменчивости (при изменении условий среды обитания носители таких мутаций могут получить преимущество в борьбе за существование).

© Мутации по степени фенотипического проявления:

¨ крупные - хорошо заметные мутации, сильно изменяющие фенотип (махровость у цветков);

¨ малые - мутации, практически не дающие фенотипического проявления (незначительное удлинение остей у колоса).

© Мутации по изменению состояния гена:

¨ прямые - переход гена от дикого типа к новому состоянию;

¨ обратные - переход гена от мутантного состояния к дикому типу.

© Мутации по характеру их появления:

¨ спонтанные - мутации, возникшие естественным путем под действием факторов среды обитания;

¨ индуцированные - мутации, искусственно вызванные действием мутагенных факторов.

© Мутации по характеру изменения генотипа:

¨ генны;

¨ хромосомные;

¨ геномные .

Мутации по характеру изменения генотипа

Мутации могут вызывать различные изменения генотипа, затрагивая отдельно взятые гены, целые хромосомы или весь геном.

Генные мутации

Генными мутациями называют изменения структуры молекулы ДНК на участке определенного гена, кодирующего структуру определенной молекулы белка. Эти мутации влекут за собой изменение строения белков, то есть появляется новая последовательность аминокислот в полипептидной цепи, в результате чего происходит изменение функциональной активности белковой молекулы. Благодаря генным мутациям происходит возникновение серии множественных аллелей одного и того же гена. Чаще всего генные мутации происходят в результате:

© замены одного или нескольких нуклеотидов на другие;

© вставки нуклеотидов;

© потери нуклеотидов;

© удвоения нуклеотидов;

© изменения порядка чередования нуклеотидов.

Хромосомные мутации

Хромосомные мутации - мутации, вызывающие изменения структуры хромосом. Они возникают в результате разрыва хромосом с образованием "липких" концов, "Липкие" концы - это одноцепочечные фрагменты на концах двухцепочечной молекулы ДНК. Эти фрагменты способны соединяться с другими фрагментами хромосом, также имеющих "липкие" концы. Перестройки могут осуществляться как в пределах одной хромосомы - внутрихромосомные мутации, так и между негомологичными хромосомами - межхромосомные мутации.

© Внутрихромосомные мутации:

¨ делеция - утрата части хромосомы (АВСD ® AB);

¨ инверсия - поворот участка хромосомы на 180˚(ABCD ® ACBD);

¨ дупликация - удвоение одного и того же участка хромосомы; (ABCD ® ABCBCD);

© Межхромосомные мутации:

¨ транслокация - обмен участками между негомологичными хромосомами (АВCD ® AB34).

Геномные мутации

Геномными называют мутации, в результате которых происходит изменение в клетке числа хромосом. Геномные мутации возникают в результате нарушения митоза или мейоза, приводящих либо к неравномерному расхождению хромосом к полюсам клетки, либо к удвоению хромосом, но без деления цитоплазмы.

В зависимости от характера изменения числа хромосом, различают:

¨ Гаплоидию - уменьшение числа полных гаплоидных наборов хромосом.

¨ Полиплоидию - увеличение числа полных гаплоидных наборов хромосом. Полиплоидия чаще наблюдается у простейших и у растений. В зависимости от числа гаплоидных наборов хромосом, содержащихся в клетках, различают: триплоиды (3n), тетраплоиды (4n) и т.д. Они могут быть:

§ автополиплоидами - полиплоидами, возникающими в результате умножения геномов одного вида;

§ аллополиплоидами - полиплоидами, возникающими в результате умножения геномов разных видов (характерно для межвидовых гибридов).

¨ Гетероплоидию (анеуплоидия ) - некратное увеличение или уменьшение числа хромосом. Чаще всего наблюдается уменьшение или увеличение числа хромосом на одну (реже две и более). Вследствие нерасхождения какой-либо пары гомологичных хромосом в мейозе одна из образовавшихся гамет содержит на одну хромосому меньше, а другая - на одну больше. Слияние таких гамет с нормальной гаплоидной гаметой при оплодотворении приводит к образованию зиготы с меньшим или большим числом хромосом по сравнению с диплоидным набором, характерным для данного вида. Среди анеуплоидов встречаются:

§ трисомики - организмы с набором хромосом 2n+1;

§ моносомики - организмы с набором хромосом 2n -1;

§ нулесомики - организмы с набором хромосом 2n –2.

Например, болезнь Дауна у человека возникает в результате трисомии по 21-й паре хромосом.

Н.И. Вавилов, изучая наследственную изменчивость у культурных растений и их предков, обнаружил ряд закономерностей, которые позволили сформулировать закон гомологических рядов наследственной изменчивости: «Виды и роды, генетически близкие, характеризуются сходными рядами наследственной изменчивости с такой правильностью, что, зная ряд форм в пределах одного вида, можно предвидеть нахождение параллельных форм у других видов и родов. Чем ближе генетически расположены в общей системе роды и виды, тем полнее сходство в рядах их изменчивости. Целые семейства растений в общем характеризуются определенным циклом изменчивости, проходящей через все роды и виды, составляющие семейство».

Этот закон можно проиллюстрировать на примере семейства Мятликовые, к которому относятся пшеница, рожь, ячмень, овес, просо и т.д. Так, черная окраска зерновки обнаружена у ржи, пшеницы, ячменя, кукурузы и других растений, удлиненная форма зерновки - у всех изученных видов семейства. Закон гомологических рядов в наследственной изменчивости позволили самому Н.И.Вавилову найти ряд форм ржи, ранее не известных, опираясь на наличие этих признаков у пшеницы. К ним относятся: остистые и безостые колосья, зерновки красной, белой, черной и фиолетовой окраски, мучнистое и стекловидное зерно и т.д.

Открытый Н.И.Вавиловым закон справедлив не только для растений, но и для животных. Так, альбинизм встречается не только в разных группах млекопитающих, но и птиц, и других животных. Короткопалость наблюдается у человека, крупного рогатого скота, овец, собак, птиц, отсутствие перьев у птиц, чешуи у рыб, шерсти у млекопитающих и т.д.

Закон гомологических рядов наследственной изменчивости имеет огромное значение для селекционной практики. Он позволяет предугадать наличие форм, не обнаруженных у данного вида, но характерного для близкородственных видов, то есть закон указывает направление поисков. Причем искомая форма может быть обнаружена в дикой природе или получена путем искусственного мутагенеза. Например, в 1927 г. немецкий генетик Э.Баур, исходя из закона гомологических рядов, высказал предположение о возможном существовании безалкалоидной формы люпина, которую можно было бы использовать на корм животным. Однако такие формы не были известны. Было высказано предположение, что безалкалоидные мутанты менее устойчивы к вредителям, чем растения горького люпина, и большая их часть погибает еще до цветения.

Опираясь на эти предположения, Р.Зенгбуш начал поиски безалкалоидных мутантов. Он исследовал 2,5 млн. растений люпина и выявил среди них 5 растений с низким содержанием алкалоидов, которые явились родоначальниками кормового люпина.

Более поздние исследования показали действие закона гомологических рядов на уровне изменчивости морфологических, физиологических и биохимических признаков самых разных организмов - от бактерий до человека.